Discrete optimisation - Tutorial #1

Y.Hammam & H. Talbot

3 avril 2018

On the next page is the Simplex algorithm as seen in the first lecture.

- 1. Please review it for comprehension
- 2. Run the first exercise by hand.
- 3. Implement the algorithm in the language of your choice. I recommend Python or R. An initial feasible basis is given as argument.
- 4. Verify your hand-computed solution.
- 5. Complete the remaining solution.

The Simplex algorithm for a minimization

Initialisation Let $B = B^0$ be a feasible basis solution (FBS). We assume B^{-1} exists and $B^{-1}b \ge 0$.

While The solution is non-optimal and bounded, do:

1. Compute

$$\bar{b} = B^{-1}b$$
 (Feasible Basis Solution) (1)

 $\bar{c}_e^T = c_e^T - c_b^T B^{-1} E \text{ (Reduced costs)}$

- 2. If $\bar{c}_e^T \geq 0$: Optimal solution The solution is provided from equation (1) above. Else choose x_l such that $\bar{c}_l < 0$
- 3. Compute

$$P = B^{-1}A_l$$
 (A_l is column l of A)

4. — If : $\forall i, P_i \leq 0$: unbounded solution — Else :

$$x_l = \min_{k/P_k > 0} \left\{ \frac{\bar{b}_k}{P_k} \right\} \tag{1}$$

$$j = \operatorname{argmin}_{k/P_k > 0} \left\{ \frac{\bar{b}_k}{P_k} \right\} \tag{2}$$

— Replace variable in position j in the basis by x_i .

End while

1 Problems

1.1 Problem 1

A company makes products I, II and III from some some resources. Here are the resources consumed for each unit of product produced:

Product	I	II	III	Resource availability
Machine time	2	3	1	10
Primary materials	1	4	3	15

Profits values from each product are respectively 6, 4 and 5.

- a) Formulate the problem as an LP, to maximize the profit.
- b) Put in standard form.
- c) Solve by the simplex algorithm.

1.2 Problem 2

A company produces 3 types of products (A, B, and C), and can sell them in unlimited quantities at the following prices: A: 10 euros, B: 56 euros, C: 100 euros

Production constraints are the following:

- To produce one unit of A requires 1h of work.
- To produce one unit of B requires 2h of work + two units of A.
- To produce one unit of C requires 3h of work + 1 unit of B.
- The company only has 35h of work at its disposal only.
- a) Formulate the problem as an LP
- b) Put in standard form
- c) Solve the problem using the simplex algorithm