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Inverse problems in imaging

Section 1

Inverse problems in imaging
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Inverse problems in imaging

Motivation: inverse problems in imaging

−→

• Images we observe are nearly always blurred, noisy, projected versions of
some “reality”.

• We wish to dispel the fog of acquisition by removing all the artefacts as
much as possible to observe the “real” data.

• This is an inverse problem.
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Inverse problems in imaging

Maximum Likelihood

• We want to estimate some statistical parameter θ on the basis of some
observation x. If f is the sampling distribution, f(x|θ) is the probability
of x when the population parameter is θ. The function

θ 7→ f(x|θ)

is the likelihood. The Maximum Likelihood estimate is

θ̂ML(x) = argmax
θ

f(x|θ)

• E.g, if we have a linear operator H (in matrix form) and Gaussian
deviates, then

argmax
x

f(x) = −‖Hx− y‖22 = −x>H>Hx+ 2y>Hx− y>y

is a quadratic form with a unique maximum, provided by

∇f(x) = −2H>Hx+ 2H>y = 0→ θ = (H>H)−1H>y
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Inverse problems in imaging

Strengths and drawbacks of MLE

• When possible, MLE is fast and effective. Many imaging operators have
a MLE interpretation:

• Gaussian smoothing ;
• Wiener filtering ;
• Filtered back projection for tomography ;
• Principal component analysis . . .

• However these require a very descriptive model (with few degrees of
freedom) and a lot of data, typically unsuitable for images because we do
not have a suitable model for natural images.

• When we do not have all these hypotheses, sometimes the Bayesian
Maximum A Posteriori approach can be used instead.
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Inverse problems in imaging

Maximum A Posteriori

• If we assume that we know a prior distribution g over θ, i.e. some a-priori
information. Following Bayesian statistics, we can treat θ as a random
variable and compute the posterior distribution of θ:

θ 7→ f(θ|x) =
f(x|θ)g(θ)∫

ϑ∈Θ
f(x|ϑ)g(ϑ)dϑ

(i.e. the Bayes theorem).

• Then the Maximum a Posteriori is the estimate

θ̂MAP (x) = argmax
θ

f(θ|x) = argmax
θ

f(x|θ)g(θ)

• MAP is a regularization of ML.
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Inverse problems in imaging

Markov Random Fields

So far this is statistics theory. What is the link between MAP and imaging ?
We need an imaging model.

• A Markov Random Field is a model made of a set of “sites” (a.k.a.
pixels) S = {s1, . . . , sn}, a set of random variables y = {y1, . . . , yn}
associated with each pixel, and a set of neighbours N1,...,n at each pixel
location.

• Np describes the neighborhood at pixel p.

• Obeys the Markov condition, i.e.

Pr(yp|yS\p) = Pr(yp|Np)

I.e.: the probability of a pixel p depends only on its immediate
neighbours.
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Inverse problems in imaging

Formulating the MAP of an MRF

Now let us express a MAP formulation for an MRF

• Given a set of observables x = {x1, . . . , xn},
• We derive a MAP

ŷ = argmax
y1...n

Pr(y1...n|x) (1)

= argmax
y1...n

n∏
n=1

Pr(xn|yn) Pr(y1...n) (2)

= argmax
y1...n

n∑
n=1

log[Pr(xn|yn)] + log[Pr(y1...n)] (3)

= argmin
y1...n

n∑
p=1

Up(yp) +
∑
u∈Np

Pu,p(yu, yp) (4)

(Geman & Geman, PAMI 1984).

H. Talbot : Optimisation — March 26, 2018 9/95



Inverse problems in imaging

Solving the MAP-MRF formulation

• This last sum is an energy contains unary terms Up(yp) and pairwise
terms Pu,p(yu, yp).

• We now have an optimization problem. Depending on the expression of
the probability functions, can solve it by i: statistical means, e.g. EM, ii:
physical analogies, e.g. simulated annealing or iii: via linear/convex
optimization techniques.

• With some restrictions, graph cuts are able to optimize these energies.
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Inverse problems in imaging

MRF and Graph Cuts

For instance, consider the binary segmentation problem. With unary weights
the above can be written:

argmin Ê(G) =
∑
vi∈V

wi(Vi) + λ
∑
eij∈~E

wijδVi 6=Vj
(5)

• Vi is 1 if vi ∈ Vs and 0 if vi ∈ Vt, i.e. it is 1 if pixel i belongs to the
partition containing s and 0 otherwise.

• δVi 6=Vj
is 1 if the corresponding eij is on the cut, and 0 otherwise.

• The first sum contains the pairwise terms, and sums the cost of the cut
in the image plane. The second sum contains the unary terms, and adds
the cost of a pixel to belong to either the partition containing s or the
partition containing t.
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Inverse problems in imaging

Illustration

S

T

(a)

S

T

(b)

Figure: Segmentation with unary weights. In this case weighted edges link the
source and the sink to all the pixels in the image (a). The min-cut is a surface
separating s from t (b). Some strong edge weights can ensure the surface crosses
the pixel plane, enforcing topology constraints.
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Inverse problems in imaging

Segmentation example

(a) (b)

Figure: Binary segmentation with unary weights and no markers

(Boykov-Jolly segmentation model, ICCV 2001).
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Inverse problems in imaging

Image restoration and graph cuts

• GC are able to optimize some MRF energies exactly (globally) in the
binary case

• More generally, submodular (e.g. discrete-convex) energies can be at
least locally optimized using graph cuts

• Using various constructions, e.g. Ishikawa PAMI 2003, it is possible to
map restoration (denoisng) problems to GC.

• Many GC optimization approaches have been invented to solve the
corresponding energies: α-expansions, α− β moves, convex moves, etc
(Veksler 1999). They were essentially known before in other communities
(Murota 2003).

• More recent approaches are able to optimize the same kind of energies
using different techniques: Belief propagation, Primal-dual
Tree-Reweighted, etc (Kolmogorov PAMI 2006).
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Inverse problems in imaging

Graph-based energies

These formulation are very useful but suffer from the purely discrete graph
framework

• Formulations and solutions are not isotropic (grid bias)

• Graph based formulation can be resource-intensive (memory and speed)

• They are hard to parallelize

• Hard to incorporate extra constraints and projection/linear operators.
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Concepts in optimisation

Section 2

Concepts in optimisation
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Concepts in optimisation

Introduction

• Mathematical optimization is a domain of applied mathematics relevant
to many areas including statistics, mechanics, signal and image
processing.

• Generalizes many well known techniques such as least squares, linear
programming, convex programming, integer programming, combinatorial
optimization and others.

• In this talk we will overview both the continuous and discrete
formulations.

• We follow the notations of Boyd & Vandeberghe [?].
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Concepts in optimisation

General form

Cost function and constraints

An optimization problem generally has the following form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m
(6)

x = (x1, . . . , xn) is a vector of Rn called the optimization variable of the
problem; f0 : Rn → R is the cost function functional; the fi : Rn → R are the
constraints and the bi are the bounds (or limits).
A vector x? is is optimal, or is a solution to the problem, if it has the smallest
objective value among all vectors that satisfy the constraints.
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Concepts in optimisation

Types of optimization problems

• The type of the variables, the cost function and the constraints
determine the type of problems we are dealing with.

• Optimization problems, in their most general form, are usually unsolvable
in practice. NP-complete problems (traveling salesperson, subset-sum,
etc) can classically be put in this form and so can many NP-hard
problems.

• Some mathematical regularity is necessary to be able to find a solution:
for example, linearity or convexity in all the functions.

• Requiring integer solutions usually, but not always, makes things much
harder: Diophantine vs linear equations for instance.
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Concepts in optimisation

Resolution of optimisation problems

The resolution of an optimisation problem depends on its form. In order of
complexity, we can solve optimisation problems:

• In closed form solution (some regression problems)

• If convex: by some iterative descent-like method, yielding a global
optimum. Note: may work in the non-differentiable case.

• If non-convex, but regular in some other way (differentiable,
quasi-convex, ...): iterative descent-like, converging to a local optimum
(or a critical point).

• If combinatorial, usually NP-hard, some exceptions: transport problems
(graph cuts, transshipment problems).

• If all else fails: brute force, meta-heuristics.
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Concepts in optimisation

Example closed form: least-squares

Least squares with no constraints

minimize f0(x) = ‖Ax− b‖22 =

k∑
i=1

aᵀxi − bi (7)

The system is quadratic, so convex and differentiable. The solution to (7) is
unique and reduces to the linear equation

(AᵀA)x = Aᵀb. (normal equation) (8)

The analytical solution is x = (AᵀA)−1Aᵀb, however AᵀA should never be
calculated, much less the inverse, for numerical reasons.
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Concepts in optimisation

Regularization: Tikhonov

Even with something as simple as least-squares, if A is ill-conditioned, the
solution will be very sensitive to noise, e.g. in the example of deconvolution or
tomography. One solution is to use regularization.

Ill-posed least-squares problems

The simplest regularization strategy is due to Tikhonov [?].

minimize f0(x) = ‖Ax− b‖22 + ‖Γx‖22, (9)

where Γ is a well-chosen operator, e.g. λI or ∇x or a wavelet operator. The
solution is given analytically by

x = (AᵀA+ ΓᵀΓ)−1Aᵀb (10)
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Concepts in optimisation

Example iterative: linear programming

Linear programming with constraints

minimize cᵀx

subject to aᵀi x ≤ bi; i = 1, . . . , n
(11)

• No analytical solution.

• Well established family of algorithms: the Simplexe (Dantzig 1948) ;
interior-point (Karmarkar 1984)

• Not always easy to recognize. Important for compressive sensing.
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Concepts in optimisation

Duality in the LP case

Primal / Dual linear programs
Primal

minimize cᵀx

subject to aᵀi x ≤ bi; i = 1, . . . , n
(12)

Dual

maximize bᵀy

subject to aix ≥ ci; i = 1, . . . ,m
(13)

• A primal/dual pair of LP problems can be obtained by transposing the
constraint matrix and swapping cost function and constraint bounds.

• The primal and dual optima, if they exist, are the same, and can be easily
deducted from each other.
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Concepts in optimisation

Duality in convex optimization

• The same concept of duality applies in convex optimization

• Duality allows one to swap constraints for terms in the objective function

• Two concepts of duality : Lagrange and Fenchel. Both are equivalent.
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Concepts in optimisation

Lagrange duality

Primal form

min. f0(x)

subject to fi(x) ≤ 0, i ∈ [1,m]

hi(x) = 0, i ∈ [1, p]

(14)

Dual form

max. g(λ, ν) = inf
x∈D

Lx,λ,ν =

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
subject to λ ≥ 0

(15)
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Concepts in optimisation

Notes on Lagrange duality

• g(λ, ν) is always concave ;

• if p∗ is an optimal solution for (14), then ∀λ ≥ 0,∀ν, g(λ, ν) ≤ p∗
• if d∗ is the optimal solution for (15), then d∗ ≤ p∗ (weak duality)

• if (14) is convex, then d∗ = p∗ (strong duality). (Note: this means the
hi are linear). The reverse is not true.

• Various interesting interpretations, in particular saddle-point (min-max)
optimisation, leading to efficient algorithms.

• Complementary slackness ;

• KKT conditions.
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Concepts in optimisation

Fenchel conjugate

Definition

Let f : Rn → R, the function f∗ : Rn → R is defined as:

f∗(y) = inf
x∈domf

yᵀx− f(x) (16)

is the conjugate of f . It is always convex.

Example

If ‖.‖ is a norm on Rn and its dual norm ‖.‖∗, the conjugate of f(x) = ‖x‖ is

f∗(y) =

{
0 ‖y‖∗ ≤ 1
∞ otherwise

, (17)

i.e. f∗(y) = ι‖y‖∗≤1.
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Concepts in optimisation

Link between Lagrange duality and Fenchel conjugate

Unconstrained problem

minimize f0(Ax+ b). (18)

Its Lagrangian dual is the constant p∗, not very interesting or useful.

Related problem

minimize f0(y)

subject to Ax+ b = y,
(19)

its dual is
maximize bᵀν − f∗0 (ν)

subject to Aᵀν = 0
(20)
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Concepts in optimisation

Algorithms

Problem

Minimize the function f ∈ Γ0(Rn)onRn

• if f has a β-Lipschitz gradient with β ∈]0,+∞[,

∀l ∈ N, xl+1 = xl + γl∇f(xl), ( Explicit step ) (21)

with 0 < inf l∈N γl and supl∈N γl < 2β−1.

• If f is not differentiable, replace the gradient with the subgradient

∂f = {t ∈ Rn,∀y ∈ Rn, f(y) ≥ f(x) + tᵀ(y − x)} (22)

t ∈ ∂f(x) : subgradient at x ∈ Rn, ∂f : Rn → 2R
n

.
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Concepts in optimisation

Illustration subgradient

Introduction Proximal-based algorithms Applications Conclusion

Proximal methods: tools for solving inverse problems on a large scale 12/35

Subdifferential

f (y)

f (x) + ⟨y − x |t⟩

y

x

t ∈ ∂f (x)
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Concepts in optimisation

Examples of subgradients

• if f is differentiable at x ∈ Rn, then ∂f(x) = {∇f(x)}
• if f = |.|, then

∀x ∈ R, ∂f(x) =

{
{sign(x)} if x 6= 0

[-1,+1] if x = 0
(23)
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Concepts in optimisation

Subgradient algorithm [Shor, 1979]

Explicit form

∀l ∈ N, xl+1 = xl − γltl; tl ∈ ∂f(xl), (24)

where (∀l ∈ N), γl ∈]0,+∞[,
∑+∞

0 γ2
l < +∞ and

∑+∞
0 γl = +∞.

Implicit form

∀l ∈ N,xl+1 = xl − γlt′l, t′l ∈ ∂f(xl+1)

⇔xl − xl+1 ∈ γl∂f(xl+1)
(25)
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Concepts in optimisation

Origins of the proximity operator

Property

Let φ ∈ Γ0(Rn),∀x ∈ Rn, there exists a unique vector x̂ ∈ Rn such that
x− x̂ ∈ ∂φ(x̂)

• let x̂ = proxφ(x)

• proxφ(x) : Rn → Rn: proximity operator.

Proximal point algorithm

∀l ∈ N, xl − xl+1 ∈ γl∂f(xl+1)

⇔ xl+1 = proxγlf(xl)
(26)
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Concepts in optimisation

Alternate definition of the prox

Property

Let f ∈ Γ0(Rn). For all x ∈ Rn, proxf (x) is the only minimizer of

y 7→ f(y) +
1

2
‖x− y‖22. (27)

The definitions are equivalent

proxf (x) = argmin
y

f(y) +
1

2
‖x− y‖22

⇔ 0 ∈ ∂{f(y) +
1

2
‖x− y‖22‖}

⇔ 0 ∈ ∂f(y)− x+ y

⇔ ∃ x̂, x− x̂ ∈ ∂f(x̂)

(28)
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Concepts in optimisation

Examples of prox

• if f(x) = |x|,proxf (x) =

 x+ 1 x ≤ −1
0 x ∈ [−1,+1]
x− 1 x ≥ 1

This is soft-thresholding, very popular in wavelet analysis, also see Lasso
algorithm in statistics.

• if f = ι(χ), χ convex set, and ι the indicator function

ιχ(x) =

{
0 ∀x ∈ χ,
+∞ otherwise

proxf (x) = projection onto convex set χ.
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Concepts in optimisation

Forward-backward algorithm

Optimisation problem

We seek to minimize the functional f + g on Rn, assuming that g has a
β-Lipschitz gradient.

Forward-backward algorithm

∀` ∈ N, x`+1 = x` − γ`(t′` +∇g(x`)), t
′
` ∈ ∂f(x`+1) (29)

⇔ x`+1 = proxγ`f (x` − γ`∇g(x`)) (30)
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Formulations in imaging

Section 3

Formulations in imaging
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Formulations in imaging

Continuous image restoration model

• We suppose there exists some unknown image x ∈ RN .

• However we do observe some data y ∈ RQ via some linear operator H,
which is corrupted by some noise:

y = Hx + u, H ∈ RQ×N

x y
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Formulations in imaging

Recovery

• We seek to recover a good approximation x̂ of x from H and y.

• H can be:
• Model for camera, including defocus and motion blur
• MRI, PET,
• X-Ray tomography
• . . .

• u often modeled by Additive White Gaussian Noise, but can be Poisson,
Poisson Gauss, Rician, etc.

Simplest case: least squares:

x̂ = argminx ‖Hx− y‖22

analytical, simple, effective, but not robust to outliers.
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Formulations in imaging

Recovery

• We seek to recover a good approximation x̂ of x from H and y.

• H can be:
• Model for camera, including defocus and motion blur
• MRI, PET,
• X-Ray tomography
• . . .

• u often modeled by Additive White Gaussian Noise, but can be Poisson,
Poisson Gauss, Rician, etc.

Tikhonov regularization:

x̂ = argminx ‖x‖22 + λ‖Hx− y‖22

reflect the prior assumption that we want to avoid large x. Also analytical
and more robust but not sparse.
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Formulations in imaging

Recovery

• We seek to recover a good approximation x̂ of x from H and y.

• H can be:
• Model for camera, including defocus and motion blur
• MRI, PET,
• X-Ray tomography
• . . .

• u often modeled by Additive White Gaussian Noise, but can be Poisson,
Poisson Gauss, Rician, etc.

Enforced sparsity:

x̂ = argminx ‖x‖0 + λ‖Hx− y‖2

If we know x to be sparse (many zero elements) in some space (e.g.
Wavelets). Highly non-convex.
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Formulations in imaging

Recovery

• We seek to recover a good approximation x̂ of x from H and y.

• H can be:
• Model for camera, including defocus and motion blur
• MRI, PET,
• X-Ray tomography
• . . .

• u often modeled by Additive White Gaussian Noise, but can be Poisson,
Poisson Gauss, Rician, etc.

Compressive sensing:

x̂ = argminx ‖x‖1 + λ‖Hx− y‖2

If we know x to be sparse (many zero elements) in some space (e.g.
Wavelets). Smallest convex approximation of the `0 pseudo-norm.
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Formulations in imaging

Formal context

Penalized optimization problem

Find
min
x∈RN

(
F (x) = Φ(Hx− y) + λR(x)

)
,

Φ  Fidelity to data term, related to noise

R  Regularization term, related to some a priori assumptions

λ  Regularization weight

Here, x is sparse in a dictionary V of analysis vectors in RN

F 0(x) = Φ(Hx− y)+λ `0(V x)

where ψδ is a differentiable, non-convex approximation of the `0 norm.
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Formulations in imaging

Formal context

Penalized optimization problem

Find
min
x∈RN

(
F (x) = Φ(Hx− y) + λR(x)

)
,

Φ  Fidelity to data term, related to noise

R  Regularization term, related to some a priori assumptions

λ  Regularization weight

Here, x is sparse in a dictionary V of analysis vectors in RN

F δ(x) = Φ(Hx− y)+λ

C∑
c=1

ψδ(V
>
c x)

where ψδ is a differentiable, non-convex approximation of the `0 norm.
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Formulations in imaging

Benefits and drawbacks of the continuous approach

• pros
• flexible theory (not just denoising; deblurring, tomography, MRI

reconstruction, etc)
• large library of algorithms, many more than in the discrete case
• isotropic
• convergence proofs and characterization of solutions.

• cons
• non-explicit discretization
• non-flexible structure
• deriving projections operators sometimes inefficient or impossible
• conditions for convergence.
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Formulations in imaging

Discrete and continuous approaches

Both the previous discrete and continuous formulation have a MAP
interpretation.

• Total Variation (TV) minimization: good regularization tool

• Weighted TV : penalization of the gradient leading to improved results

Our contribution

• General combinatorial formulation of the dual TV problem : easily
suitable to various graphs

• Generic constraint in the dual problem : more flexible penalization of the
gradient → sharper results
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Formulations in imaging

Outline

1. Generalization of TV models

2. Parallel Proximal Algorithm as an efficient solver

3. Results
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Discrete calculus

Section 4

Discrete calculus
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Discrete calculus

Discrete formulation on graphs - notations

Graph of N vertices, M edges

Incidence matrix A ∈ RM×N

A =

p1 p2 p3 p4
e1 −1 1 0 0
e2 −1 0 1 0
e3 0 −1 1 0
e4 0 −1 0 1
e4 0 0 −1 1

• A gradient operator

• A> divergence operator

• allows general formulation of
problems on arbitrary graphs

For more details: L. Grady and J.R. Polimeni,

“Discrete Calculus: Applied Analysis on Graphs for Computational Science”, Springer, 2010.
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Discrete calculus

Minimal surfaces
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Discrete calculus

Motivation

• In the continuum: Minimal cut (surface in
3D) is dual of continuous maximum flow
[Strang 1983]

• In the classic discrete case min-cut (=
“Graph cuts”)/ max flow duality but grid
bias in the solution

• Recent trend: employ a spatially
continuous maximum flow to produce
solutions with no grid bias

Max Flow (Graph Cuts)

Continuous Max Flow
[Appleton-Talbot 2006]
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Discrete calculus

Motivation

• [Appleton-Talbot 2006, generalized by Unger-Pock-Bishof 2008] Fastest
known continuous max-flow algorithm has no stopping criteria and no
converge proof.

Our contribution: Combinatorial Continuous Maximum Flow

• a new discrete isotropic formulation

• avoids blockiness artifacts

• is proved to converge, is fast

• generalizes to arbitrary graphs

[In SIAM Journal on Imaging Sciences, 2011]
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Discrete calculus

Combinatorial Continuous Maximum Flow (CCMF)

• Incidence matrix of a graph noted A

Continuous
MaxFlow

max−→
F

−→
F st

s.t. ∇ · −→F = 0,

||−→F || ≤ g.

Combinatorial
formulation

max
F

Fst

s.t. ATF = 0,

|AT |F 2 ≤ g2

g defined on nodes

MaxFlow,
GraphCuts

max
F

Fst

s.t. ATF = 0,

|F | ≤ g

g defined on edges

• CCMF : convex problem

• Resolution by an interior point method.
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Discrete calculus
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Discrete calculus

Graph Cuts vs CCMF

S

T

S

T

minimal cut on

saturated edges

minimal cut on

saturated vertices

Scale of weight intensity :
1 ... ∞
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Discrete calculus

CCMF dual problem

• The dual of the CCMF problem is

min
λ≥0,ν

∑
vi∈V

λig
2
i︸︷︷︸

weighted cut

+
1

4

∑
eij∈E\{s,t}

(νi − νj)2

λi + λj︸ ︷︷ ︸
smoothness term

+
1

4

(νs − νt − 1)2

λs + λt︸ ︷︷ ︸
source-sink
enforcement

Image
with seeds

λ ν Threshold
of ν at .5
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Discrete calculus

Minimal surfaces

Catenoid test problem:

• source constituted by two full circles

• sink by the remaining boundary of the image, constant metric g

analytic minimal CCMF result
surface isosurface of ν

Root Mean Square Error between the surfaces : 0.75

(Appleton-Talbot error : 1.98)
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Discrete calculus

Comparison with Graph cuts

Graph cuts result CCMF result

GC CCMF GC CCMF GC CCMF
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Discrete calculus

Convergence
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Discrete calculus

Genericity of the method

S

T

Unseeded segmentation

Classification
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Discrete calculus

Genericity of the method

S

T

Unseeded segmentation

Classification
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Discrete calculus

Total variation regularization

• Given an original image f

• Deduce a restored image u

Weighted anisotropic TV model [Gilboa and Osher 2007]

min
u

∫ (∫
wx,y(uy − ux)2dy

)1/2

dx︸ ︷︷ ︸
regularization R(u)

+
1

2λ

∫
(ux − fx)2dx︸ ︷︷ ︸

data fidelity Φ(u)

where

• λ ∈]0,+∞[ regularization parameter
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Discrete calculus

Equivalent dual formulation

Weighted anisotropic TV model [Gilboa and Osher 2007]

min
u

∫ (∫
wx,y(uy − ux)2dy

)1/2

dx+ Φ(u)

is equivalent [Chan, Golub, Mulet 1999] to the min-max problem

min
u

max
||p||∞≤1

∫ ∫
w1/2
x,y (uy − ux)px,ydxdy + Φ(u)

with p a projection vector field.

Main idea

• p was introduced in practice to compute a faster solution

• constraining p can promote better results
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Discrete calculus

Segmentation

• Same model as denoising, with a labeled fidelity term

• Same regularisation. This includes very widespread models such as
watershed, region growing, minimal curves and surfaces, geodesic active
contours, and more.
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Discrete calculus

Deblurring, tomography

• Deblurring / tomography simply composes a linear term within the
fidelity.

• Same model for regularization as before

• Possible to do very advanced applications: local tomography, angular
integration tomography, dual image deblurring, etc.

• Also applicable with wavelets, etc. Any linear operator can serve.
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Discrete calculus

Discrete formulations of TV and its dual

Let u ∈ RN be the restored image.
[Bougleux et al. 2007]

min
u

n∑
i=1

( ∑
j∈Ni

wi,j(uj − ui)2
)1/2

+ Φ(u)

where Ni = {j ∈ {1, . . . , n} | ei,j ∈ E}.
We introduce the following combinatorial formulation
for the primal dual problem

min
u

max
‖p‖∞≤1, p∈RM

p>((Au) · √w) + Φ(u)
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Discrete calculus

Dual constrained TV based formulation

Constraining the projection vector

• Introducing the projection vector F ∈ RM = p · √w
• Constraining F to belong to a convex set C

min
u∈RN

sup
F∈C

F>(Au)︸ ︷︷ ︸
regularization

+
1

2λ
‖u− f‖22︸ ︷︷ ︸

data fidelity

• C = ∩m−1
i=1 Ci 6= ∅ where C1, . . . , Cm−1 closed convex sets of RM .

• Given g ∈ RN , θi ∈ RM , α ≥ 1,
Ci = {F ∈ RM | ‖θi · F‖α ≤ gi}.
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Discrete calculus

Dual constrained TV based formulation

min
u∈RN

sup
F∈C

F>(Au)︸ ︷︷ ︸
regularization

+
1

2λ
‖u− f‖22︸ ︷︷ ︸

data fidelity

• C = ∩m−1
i=1 Ci, Ci = {F ∈ RM | ‖θi · F‖α ≤ gi}, α ≥ 1.

Example adapted to image denoising

• gi ∈ RN weight on vertex i, inversely function
of the gradient of f at node i.

• Flat area : weak gradient → strong gi → strong
Fi,j → weak local variations of u.

• Contours : strong gradient → weak gi → weak
Fi,j → large local variations of u allowed.

gj1

gi

gj3

gj4 gj2

Fj3,i

Fj4,i

Fj1,i

Fj2,i

Ci = {F ∈ RM |
√ ∑

j∈Ni

F 2
j,i ≤ gi}
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Discrete calculus

Illustration of constraining flow

Illustration of constraining flow.
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Discrete calculus

Sharper results

Noisy image DCTV Weighted TV
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Discrete calculus

Extension of our DCTV based formulation

min
u∈RN

sup
F∈C

F>(Au)︸ ︷︷ ︸
regularization

+
1

2λ
‖u− f‖22︸ ︷︷ ︸

data fidelity

• f ∈ RQ, observed image

• u ∈ RN , restored image

• F ∈ RM , dual solution : projection vector

• Λ∈ RQ×Q, matrix of weights, positive definite
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Discrete calculus

Extension of our DCTV based formulation

min
u∈RN

sup
F∈C

F>(Au)︸ ︷︷ ︸
regularization

+
1

2λ
‖Hu− f‖22︸ ︷︷ ︸

data fidelity

• f ∈ RQ, observed image

• u ∈ RN , restored image

• F ∈ RM , dual solution : projection vector

• H∈ RQ×N , degradation matrix
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Discrete calculus

Extension of our DCTV based formulation

min
u∈RN

sup
F∈C

F>(Au)︸ ︷︷ ︸
regularization

+
1

2λ
‖Hu− f‖22 +

η

2
‖Ku‖2︸ ︷︷ ︸

data fidelity

• f ∈ RQ, observed image

• u ∈ RN , restored image

• F ∈ RM , dual solution : projection vector

• H ∈ RQ×N , degradation matrix
• K ∈ RN×N : projection onto KerH , η ≥ 0

• Λ∈ RQ×Q, matrix of weights, positive definite
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Discrete calculus

Extension of our DCTV based formulation
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Discrete calculus

Primal formulation

min
u∈RN

σC(Au)︸ ︷︷ ︸
regularization

+
1

2
(Hu− f)>Λ−1(Hu− f) +

η

2
‖Ku‖2︸ ︷︷ ︸

data fidelity

• C = ∩m−1
i=1 Ci 6= ∅ where C1, . . . , Cm−1 closed convex sets of RM .

• σC support function of the convex set C

σC : RM →]−∞,+∞] : a 7→ sup
F∈C

F>a.
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Discrete calculus

Dual problem

• The problem admits a unique solution û.

• Fenchel-Rockafellar dual problem:

min
F∈RM

m−1∑
i=1

ιCi
(F )︸ ︷︷ ︸

fi(F )

+fm(F )

where ιC is the indicator function of the convex C
(equal to 0 inside C and +∞ outside),
fm : F 7→ 1

2F
>AΓA>F − F>AΓH>Λ−1f ,

and Γ = (H>Λ−1H + ηK)−1.

• If F̂ is a solution to the dual problem,

û = Γ
(
H>Λ−1f −A>F̂

)
.
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Discrete calculus

Families of algorithms in continuous optimization

• Contour-based algorithms

• Snakes

• Level sets

• Region-based algorithms

• Primal only algorithms

• Primal-dual algorithms
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Discrete calculus

Parallel ProXimal Algorithm (PPXA) for DCTV [?]

γ > 0, ν ∈]0, 2[.
Repeat until convergence

For (in parallel) r = 1, . . . , s+ 1⌊
πr =

{
PCr (yr) if r ≤ s
(γAΓA> + I)−1(γAΓH>Λ−1f + ys+1) otherwise

z = 2
s+1 (π1 + · · ·+ πs+1)− F

For (in parallel) r = 1, . . . , s+ 1⌊
yr = yr + ν(z − pr)

F = F + ν
2 (z − F )

• Simple projections onto hyperspheres

• Linear system resolution
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Discrete calculus

Quantitative perfomances

• Speed : competitive with the most efficient algorithm for optimizing
weighted TV

• Denoising a 512 × 512 image
• with an Alternated Direction of Multiplier Method: 0.4 seconds
• with the Parallel Proximal Algorithm: 0.7 seconds

• Quantitative denoising experiments on standard images show
improvements of SNR (from 0.2 to 0.5 dB) for images corrupted with
Gaussian noise of variance σ2 from 5 to 25.
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Discrete calculus

Results in image denoising

Original image Noisy SNR=10.1dB

Weighted TV SNR=13.4dB DCTV SNR=13.8dB
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Discrete calculus

Comparison with more standard TV

Figure: Left hand side: Standard deviation of each test image compared with the
standard deviation of the denoising results, averaged results with
(σ2 = 5, 10, 15, 20, 25, 50). Right hand side: mean SNR over the experiments,
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Discrete calculus

Image denoising and deconvolution

Original Noisy, blurred DCTV
image image SNR=12.3dB result SNR=17.2dB
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Discrete calculus

Image fusion

Original Noisy blurry DCTV
image SNR=7.2dB SNR=11.6dB SNR=16.3dB
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Discrete calculus

Mesh denoising

Original Noisy DCTV regularization
mesh mesh on spatial coordinates
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Discrete calculus

Irregular graph

(a) Original (b) Bottlenosed (c) Sampled
image dolphin structure image

(d) Noisy sampled (e) Taubin filtered (f) DCTV result
SNR = 22.1 dB result [?] SNR = 19.4 dB (λ = 0.5) SNR = 23.3 dB

Figure: Filtering image data on a biologically sampled image [?]. Noise with variance
σ2 = 10 was added to the resampled values of the image (c) to produce (d).
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Discrete calculus

Non-local regularization

(a) Nonlocal graph (figure P. Coupé, [?]

Figure: Example of Non-Local Graph.

Original image Noisy PSNR=28.1dB

Nonlocal DCTV PSNR=35 dB
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Non-convex optimisation

Section 5

Non-convex optimisation
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Non-convex optimisation

Mumford-Shah functional [?]

We wish to minimize the following energy :

MS(K,u) =

∫
Ω\K
|u− g|2 dx︸ ︷︷ ︸
fidelity

+α

∫
Ω\K
|∇u|2 dx︸ ︷︷ ︸

regularization

+λH1(K ∩ Ω)︸ ︷︷ ︸
perimeter

avec :

• Ω the image domaine

• g a given image (e.g. g ∈ L∞(Ω))

• u a simplification of g (u ∈ H1(Ω\K))

• K set of contours
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Non-convex optimisation

Relaxation

Relaxation in SBV

MS(u) = α

∫
Ω

|u− g|2 dx+

∫
Ω

|∇u|2 dx+ λH1(Ju) (31)

Ambrosio-Tortorelli formulation [?]

ATε(u, v) =

∫
Ω

α|u− g|2 + v2|∇u|2 + λε|∇v|2 +
λ

4ε
|1− v|2 dx

if u, v ∈W 1,2(Ω) and 0 ≤ v ≤ 1.
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Non-convex optimisation

A bit more Discrete Calculus

primal dual

•

•

d0

d1

?0

?1

?2

d̄0

d̄1

?̄2

?̄1

?̄0

Figure: DEC operators
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Non-convex optimisation

Formulation in DEC

We define u and g on faces and v on vertices and edges. Fonctions u and g
are 2-forms since they represent the gray levels of each pixel.

U2V0

AT2,0
ε (u, v) = α〈u− g,u− g〉2+〈M01v,?̄d̄0?u〉21+λε〈d0v,d0v〉1+

λ

4ε
〈1− v,1− v〉0.

U0V1

AT0,1
ε (u, v) =α〈u− g,u− g〉0 + 〈v,d0u〉1〈v,d0u〉1

+ λε〈(d1 + ?̄d̄1?)v,(d1 + ?̄d̄1?)v〉1

+
λ

4ε
〈1− v,1− v〉1.
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Non-convex optimisation

Restoration
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Non-convex optimisation

Restoration
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Non-convex optimisation

Non-convex optimization

• The current frontier.

• Many interesting applications thought to be very hard to solve: blind
deblurring

• Many current methods extend to the Non-Convex case

• Generally only a local minimum is reached, but this might be OK. The
miimum might be of high quality : stochastic optimization.

• For instance: see results achieved by deep-learning methods.
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Non-convex optimisation

`2-`0 regularization functions

We consider the following class of potential functions:

1. (∀δ ∈ (0,+∞)) ψδ is differentiable.

2. (∀δ ∈ (0,+∞)) limt→∞ ψδ(t) = 1.

3. (∀δ ∈ (0,+∞)) ψδ(t) = O(t2) for small t.

Examples:

−−− ψδ(t) = t2

2δ2+t2

− · −· ψδ(t) = 1− exp(− t2

2δ2 )
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Non-convex optimisation

Majorize-Minimize principle [Hunter04]

Objective: Find x̂ ∈ Arg minx Fδ(x)

For all x′, let Q(.,x′) a tangent majorant of Fδ at x′ i.e.,

Q(x,x′) > Fδ(x), ∀x,
Q(x′,x′) = Fδ(x

′)

MM algorithm:

∀j ∈ {0, . . . , J},

xj+1 ∈ Arg minxQ(x,xj)
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Non-convex optimisation

Image reconstruction

Original image x Noisy sinogram y
128× 128 SNR=25 dB

• y = Hx̄ + u with

{
H Radon projection matrix
u Gaussian noise

• x̂ ∈ Arg minx

(
1
2‖Hx− y‖2 + λ

∑
c ψδ(V

>
c x)

)
• Non convex penalty / convex penalty
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Non-convex optimisation

Results: Non convex penalty

Reconstructed image
SNR = 20.4 dB MM-MG algorithm:

Convergence in 134 s
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Non-convex optimisation

Results: Convex penalty

Reconstructed image
SNR = 18.4 dB

MM-MG algorithm:
Convergence in 60 s
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Conclusion

Section 6

Conclusion
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Conclusion

Conclusion

• Optimization is a very powerful, general methodology

• We’ve drawn a panorama of interesting methodologies in image
processing

• Extension of TV models via dual formulations
• Many applications in inverse problems including segmentation
• Proposed algorithm efficiently solves convex and non-convex problems
• Application to arbitrary graphs

• Generally optimization problems are unsolvable without some regularity
assumptions. There exist a trade-off between the generality of a
framework and the efficiency of associated algorithms.

• On to new things: hierarchies of partitions.
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