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Generalisation of transport problems

e Many important optimization problems can best be
analyzed by means of a graphical or network
representation.

e we consider three specific network models—shortest-path
problems, maximum-flow problems, and
minimum-spanning tree problems—for which efficient
solution procedures exist.

e We also discuss minimum-cost network flow problems
(MCNFPs), of which transportation, assignment,
transshipment, shortestpath, and maximum-flow problem
are all special cases.

e Finally, we discuss a generalization of the transportation
simplex, the network simplex, which can be used to solve
MCNFPs. We begin the chapter with some basic terms
used to describe graphs and networks.
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Set notations

Let E be a finite set

A set S is called a subset of E if any element of S is also
an element of £

If S is a subset of £/, we write S C E
The set of all subsets of E is denoted by P(E)

Exemple

e IfE={1,2,3}
e ThenP(E) = {0,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}}

e Remark. S € P(E) means that S is a subset of £

e The proposition S € P(E) can thus be equivalently written
asSCFE
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Graph

Definition

e Agraph is a pair G = (E,T") where E is a finite set and
where I' is a map from E to P(E)

Exemple °
e G=(BET) I

e with E ={1,2,3,4} and 0) °

e I" defined by

D(1) = {1,2,4)
1) <

I'(2)
I'(3) = {4}
r'() =10

Representation by arrows
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Usual terminology

e Any element of FE is called a vertex (of the graph )

e Let z and y be two vertices of E, if y € I'(x),
e yis a successor of x and x is a predecessor of y
o the ordered pair (z,y) is called an arc (of the graph G)

Exemple

e 1isavertex of G

e 4 js a successor of 3

e 2 js a predecessor of 3

e Thus, (3,4) and (2, 3)
are two arcs of G
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Directed and undirected graphs

e Sometimes vertices (plural of vertex) are called nodes.

e An arcis always directed. Bidirectional arcs are called
edges.
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An example: shortest paths

Figure: An undirected graph
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An example: shortest paths (2)

—_—

Substations

Figure: A directed graph
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Shortest path as as transport problem

Figure: Transport formulatio of the shortest path problem
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Minimum spanning tree

Figure: Example for the Minimum Spanning Tree
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Minimum spanning tree

Figure: Example for the Minimum Spanning Tree
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Minimum spanning tree

Figure: Example for the Minimum Spanning Tree
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Minimum spanning tree

Figure: Example for the Minimum Spanning Tree
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Minimum spanning tree

Figure: Example for the Minimum Spanning Tree
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Minimum spanning tree

Figure: Example for the Minimum Spanning Tree
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Minimum spanning tree

Figure: Example for the Minimum Spanning Tree
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MST as a integer program

Let z;; be 1 if edge ij is in the tree T
Need constraint to ensure

e n—1ledgesinT
e nocycleinT

First constraint:

inj:n—l

ijER

Second constraint: Subtour elimination constraint: any
subset of &k vertices must have at most £ — 1 edges
contained in that subset:

Z $¢j§|S|—1,VSgV
ijeEES,jES
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MST formulation as an IP

min. Z CijTij

ijEE
s.t. inj:n—l
ijeER
Z :L‘US|S|*1,\V/SQV
ijeEieS,jeS
zij € {0,1}

Note: this formulation has an exponential number of
constraints. The LP relaxation solves the MST exactly.
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Maximum flow problem

Figure: Example for the Maximum flow problem
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Maxflow formulation as an LP

GivenI" = (V, E), s, t, c respectively the graphe, source, sink
and costs, the MF LP is

max. Z fsj

s,je€EE

s.t. Z fij = Z fjk,Vj eV — {S,t}
ijeE jkeE
fij < cij

fi; =0
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Dual problem and algorithms

e The dual problem is the minimum cut problem. See
handout.

e Algorithms: Ford-Fulkerson, Edmonds-Karp,
Push-relabel...

e Important problem, leading to graph cuts, Boykov algorithm
and efficient solution to Markov Random Fields.
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Maximum flow example solution

Figure: Solution for the Maximum flow problem
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Mincut example solution

Figure: Dual mincut solution
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