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Generalisation of transport problems

• Many important optimization problems can best be
analyzed by means of a graphical or network
representation.

• we consider three specific network models—shortest-path
problems, maximum-flow problems, and
minimum-spanning tree problems—for which efficient
solution procedures exist.

• We also discuss minimum-cost network flow problems
(MCNFPs), of which transportation, assignment,
transshipment, shortestpath, and maximum-flow problem
are all special cases.

• Finally, we discuss a generalization of the transportation
simplex, the network simplex, which can be used to solve
MCNFPs. We begin the chapter with some basic terms
used to describe graphs and networks.
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Set notations

• Let E be a finite set
• A set S is called a subset of E if any element of S is also

an element of E
• If S is a subset of E, we write S ⊆ E

• The set of all subsets of E is denoted by P(E)

Exemple

• If E = {1, 2, 3}
• Then P(E) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}

• Remark. S ∈ P(E) means that S is a subset of E
• The proposition S ∈ P(E) can thus be equivalently written

as S ⊆ E
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Graph

Definition

• A graph is a pair G = (E,Γ) where E is a finite set and
where Γ is a map from E to P(E)

Exemple

• G = (E,Γ)

• with E = {1, 2, 3, 4} and
• Γ defined by

• Γ(1) = {1, 2, 4}
• Γ(2) = {3, 1}
• Γ(3) = {4}
• Γ(5) = ∅
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Usual terminology

• Any element of E is called a vertex (of the graph G)
• Let x and y be two vertices of E, if y ∈ Γ(x),

• y is a successor of x and x is a predecessor of y
• the ordered pair (x, y) is called an arc (of the graph G)

Exemple

• 1 is a vertex of G
• 4 is a successor of 3

• 2 is a predecessor of 3

• Thus, (3, 4) and (2, 3)
are two arcs of G
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Directed and undirected graphs

• Sometimes vertices (plural of vertex) are called nodes.
• An arc is always directed. Bidirectional arcs are called

edges.
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An example: shortest paths

Figure: An undirected graph
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An example: shortest paths (2)

Figure: A directed graph
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Shortest path as as transport problem

Figure: Transport formulatio of the shortest path problem
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Minimum spanning tree

Algorithm for the Minimum Spanning Tree Problem.

1. Select any node arbitrarily, and then connect it (i.e., add a link) to the nearest distinct node.
2. Identify the unconnected node that is closest to a connected node, and then connect

these two nodes (i.e., add a link between them). Repeat this step until all nodes have
been connected.

3. Tie breaking: Ties for the nearest distinct node (step 1) or the closest unconnected node
(step 2) may be broken arbitrarily, and the algorithm must still yield an optimal solu-
tion. However, such ties are a signal that there may be (but need not be) multiple op-
timal solutions. All such optimal solutions can be identified by pursuing all ways of
breaking ties to their conclusion.

The fastest way of executing this algorithm manually is the graphical approach il-
lustrated next.

Applying This Algorithm to the Seervada Park 
Minimum Spanning Tree Problem

The Seervada Park management (see Sec. 9.1) needs to determine under which roads tele-
phone lines should be installed to connect all stations with a minimum total length of line.
Using the data given in Fig. 9.1, we outline the step-by-step solution of this problem.

Nodes and distances for the problem are summarized below, where the thin lines now
represent potential links.
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nect node A to node O.Figure: Example for the Minimum Spanning Tree
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Minimum spanning tree

Algorithm for the Minimum Spanning Tree Problem.

1. Select any node arbitrarily, and then connect it (i.e., add a link) to the nearest distinct node.
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Minimum spanning tree

The unconnected node closest to either node O or node A is node B (closest to A). Con-
nect node B to node A.

9.4 THE MINIMUM SPANNING TREE PROBLEM 419

The unconnected node closest to node O, A, or B is node C (closest to B). Connect node
C to node B.

The unconnected node closest to node O, A, B, or C is node E (closest to B). Connect
node E to node B.
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Minimum spanning tree

The unconnected node closest to either node O or node A is node B (closest to A). Con-
nect node B to node A.
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The unconnected node closest to node O, A, or B is node C (closest to B). Connect node
C to node B.

The unconnected node closest to node O, A, B, or C is node E (closest to B). Connect
node E to node B.
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Minimum spanning tree

The unconnected node closest to either node O or node A is node B (closest to A). Con-
nect node B to node A.
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The unconnected node closest to node O, A, or B is node C (closest to B). Connect node
C to node B.

The unconnected node closest to node O, A, B, or C is node E (closest to B). Connect
node E to node B.

C E

D

T5

1 7

7

4

2

3
1

4

2

5

4

O

A

B

E

D

T5

1 7

7

4

2

3
1

4

2

5

4

O

C

B

A

D

T5

1 7

7

4

2

3
1

4

2

5

4

O

C E

B

A

Figure: Example for the Minimum Spanning Tree



Network problems

Minimum spanning tree

The unconnected node closest to node O, A, B, C, or E is node D (closest to E). Connect
node D to node E.
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The only remaining unconnected node is node T. It is closest to node D. Connect node T
to node D.

All nodes are now connected, so this solution to the problem is the desired (optimal) one.
The total length of the links is 14 miles.

Although it may appear at first glance that the choice of the initial node will affect
the resulting final solution (and its total link length) with this procedure, it really does
not. We suggest you verify this fact for the example by reapplying the algorithm, starting
with nodes other than node O.

The minimum spanning tree problem is the one problem we consider in this chapter
that falls into the broad category of network design. In this category, the objective is to
design the most appropriate network for the given application (frequently involving trans-
portation systems) rather than analyzing an already designed network. Selected Reference
7 provides a survey of this important area.
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Now recall that the third problem facing the Seervada Park management (see Sec. 9.1)
during the peak season is to determine how to route the various tram trips from the park
entrance (station O in Fig. 9.1) to the scenic wonder (station T) to maximize the number
of trips per day. (Each tram will return by the same route it took on the outgoing trip, so

9.5 THE MAXIMUM FLOW PROBLEM

Figure: Example for the Minimum Spanning Tree



Network problems

Minimum spanning tree

The unconnected node closest to node O, A, B, C, or E is node D (closest to E). Connect
node D to node E.
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The only remaining unconnected node is node T. It is closest to node D. Connect node T
to node D.

All nodes are now connected, so this solution to the problem is the desired (optimal) one.
The total length of the links is 14 miles.

Although it may appear at first glance that the choice of the initial node will affect
the resulting final solution (and its total link length) with this procedure, it really does
not. We suggest you verify this fact for the example by reapplying the algorithm, starting
with nodes other than node O.

The minimum spanning tree problem is the one problem we consider in this chapter
that falls into the broad category of network design. In this category, the objective is to
design the most appropriate network for the given application (frequently involving trans-
portation systems) rather than analyzing an already designed network. Selected Reference
7 provides a survey of this important area.
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Now recall that the third problem facing the Seervada Park management (see Sec. 9.1)
during the peak season is to determine how to route the various tram trips from the park
entrance (station O in Fig. 9.1) to the scenic wonder (station T) to maximize the number
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MST as a integer program

• Let xij be 1 if edge ij is in the tree T

• Need constraint to ensure
• n− 1 edges in T
• no cycle in T

• First constraint: ∑
ij∈E

xij = n− 1

• Second constraint: Subtour elimination constraint: any
subset of k vertices must have at most k − 1 edges
contained in that subset:∑

ij∈E;i∈S,j∈S
xij ≤ |S| − 1, ∀S ⊆ V



Network problems

MST formulation as an IP

min.
∑
ij∈E

cijxij (1)

s.t.
∑
ij∈E

xij = n− 1 (2)

∑
ij∈E;i∈S,j∈S

xij ≤ |S| − 1,∀S ⊆ V (3)

xij ∈ {0, 1} (4)

Note: this formulation has an exponential number of
constraints. The LP relaxation solves the MST exactly.
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Maximum flow problem

the analysis focuses on outgoing trips only.) To avoid unduly disturbing the ecology and
wildlife of the region, strict upper limits have been imposed on the number of outgoing
trips allowed per day in the outbound direction on each individual road. For each road,
the direction of travel for outgoing trips is indicated by an arrow in Fig. 9.6. The number
at the base of the arrow gives the upper limit on the number of outgoing trips allowed per
day. Given the limits, one feasible solution is to send 7 trams per day, with 5 using the
route O ! B ! E ! T, 1 using O ! B ! C ! E ! T, and 1 using O ! B ! C !
E ! D ! T. However, because this solution blocks the use of any routes starting with 
O ! C (because the E ! T and E ! D capacities are fully used), it is easy to find bet-
ter feasible solutions. Many combinations of routes (and the number of trips to assign to
each one) need to be considered to find the one(s) maximizing the number of trips made
per day. This kind of problem is called a maximum flow problem.

In general terms, the maximum flow problem can be described as follows.

1. All flow through a directed and connected network originates at one node, called the
source, and terminates at one other node, called the sink. (The source and sink in the
Seervada Park problem are the park entrance at node O and the scenic wonder at node
T, respectively.)

2. All the remaining nodes are transshipment nodes. (These are nodes A, B, C, D, and E
in the Seervada Park problem.)

3. Flow through an arc is allowed only in the direction indicated by the arrowhead, where
the maximum amount of flow is given by the capacity of that arc. At the source, all
arcs point away from the node. At the sink, all arcs point into the node.

4. The objective is to maximize the total amount of flow from the source to the sink. This
amount is measured in either of two equivalent ways, namely, either the amount leav-
ing the source or the amount entering the sink.

Some Applications

Here are some typical kinds of applications of the maximum flow problem.

1. Maximize the flow through a company’s distribution network from its factories to its
customers.

2. Maximize the flow through a company’s supply network from its vendors to its factories.
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Figure: Example for the Maximum flow problem
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Maxflow formulation as an LP

Given Γ = (V,E), s, t, c respectively the graphe, source, sink
and costs, the MF LP is

max.
∑
s,j∈E

fsj (5)

s.t.
∑
ij∈E

fij =
∑
jk∈E

fjk, ∀j ∈ V − {s, t} (6)

fij ≤ cij (7)
fij ≥ 0 (8)
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Dual problem and algorithms

• The dual problem is the minimum cut problem. See
handout.

• Algorithms: Ford-Fulkerson, Edmonds-Karp,
Push-relabel...

• Important problem, leading to graph cuts, Boykov algorithm
and efficient solution to Markov Random Fields.
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Maximum flow example solution

The current flow pattern may be identified by either cumulating the flow assignments
or comparing the final residual capacities with the original arc capacities. If we use the
latter method, there is flow along an arc if the final residual capacity is less than the orig-
inal capacity. The magnitude of this flow equals the difference in these capacities. Ap-
plying this method by comparing the residual network obtained from the last iteration
with either Fig. 9.6 or 9.7 yields the optimal flow pattern shown in Fig. 9.8.

This example nicely illustrates the reason for replacing each directed arc i ! j in the
original network by an undirected arc in the residual network and then increasing the resid-
ual capacity for j ! i by c* when a flow of c* is assigned to i ! j. Without this refine-
ment, the first six iterations would be unchanged. However, at that point it would appear
that no augmenting paths remain (because the real unused arc capacity for E ! B is zero).
Therefore, the refinement permits us to add the flow assignment of 1 for O ! C ! E !
B ! D ! T in iteration 7. In effect, this additional flow assignment cancels 1 unit of
flow assigned at iteration 1 (O ! B ! E ! T) and replaces it by assignments of 1 unit
of flow to both O ! B ! D ! T and O ! C ! E ! T.

Finding an Augmenting Path

The most difficult part of this algorithm when large networks are involved is finding an
augmenting path. This task may be simplified by the following systematic procedure. Be-
gin by determining all nodes that can be reached from the source along a single arc with
strictly positive residual capacity. Then, for each of these nodes that were reached, deter-
mine all new nodes (those not yet reached) that can be reached from this node along an
arc with strictly positive residual capacity. Repeat this successively with the new nodes
as they are reached. The result will be the identification of a tree of all the nodes that can
be reached from the source along a path with strictly positive residual flow capacity. Hence,
this fanning-out procedure will always identify an augmenting path if one exists. The pro-
cedure is illustrated in Fig. 9.9 for the residual network that results from iteration 6 in the
preceding example.

Although the procedure illustrated in Fig. 9.9 is a relatively straightforward one, it
would be helpful to be able to recognize when optimality has been reached without an
exhaustive search for a nonexistent path. It is sometimes possible to recognize this event
because of an important theorem of network theory known as the max-flow min-cut the-
orem. A cut may be defined as any set of directed arcs containing at least one arc from
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Seervada Park maximum flow
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Figure: Solution for the Maximum flow problem
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Mincut example solution

every directed path from the source to the sink. There normally are many ways to slice
through a network to form a cut to help analyze the network. For any particular cut, the
cut value is the sum of the arc capacities of the arcs (in the specified direction) of the
cut. The max-flow min-cut theorem states that, for any network with a single source and
sink, the maximum feasible flow from the source to the sink equals the minimum cut value
for all cuts of the network. Thus, if we let F denote the amount of flow from the source
to the sink for any feasible flow pattern, the value of any cut provides an upper bound to
F, and the smallest of the cut values is equal to the maximum value of F. Therefore, if a
cut whose value equals the value of F currently attained by the solution procedure can be
found in the original network, the current flow pattern must be optimal. Eventually, opti-
mality has been attained whenever there exists a cut in the residual network whose value
is zero.

To illustrate, consider the network of Fig. 9.7. One interesting cut through this net-
work is shown in Fig. 9.10. Notice that the value of the cut is 3 ! 4 ! 1 ! 6 " 14, which
was found to be the maximum value of F, so this cut is a minimum cut. Notice also that,
in the residual network resulting from iteration 7, where F " 14, the corresponding cut
has a value of zero. If this had been noticed, it would not have been necessary to search
for additional augmenting paths.
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Procedure for finding an
augmenting path for
iteration 7 of the Seervada
Park maximum flow
problem.
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Figure: Dual mincut solution
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