Solution of transport problems

Transshipment problems

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Transport problems Resolution

Hugues Talbot

Centre de Vision Numérique (CVN)

May 4, 2018

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction Introduction

Solution of transport problems Initial feasible basis solution The transport simplex

Transshipment problems Transshipment

Conclusion Conclusion

Solution of transport problems

Transshipment problems

Conclusion

Introduction

- Transport problems are LP associating producers and consumers. consommateurs ;
- We can always balance transport problems so that all the production is consumed, if necessary by introducing extra consumer nodes ;
- Transport problems are easier to solve than standard LP. There is no matrix inversion, only additions and substractions;
- Integer transport problems are no harder to solve than real number ones.

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Refresher

- We can represent a transport problem in a *tableau*;
- A problem with m producers and n consumers is of rank m + n 1 (Q: why ?);
- A balanced transport problem only has equality constraints (Q: why ?)
- Normally, an LP with only equality constraints is harder to get started than other problems (i.e. it is harder to find an initial feasible solution basis). Why ?

Solution of transport problems

Transshipment problems

Conclusion

Example

Transport problem

Equivalent LP problem

- We must eliminate one of the constraints, which is redundant, so the rank of the problem is m + n 1 = 4
- Finding an initial feasible solution basis is not trivial. For instance {*x*₁₁, *x*₁₂, *x*₂₁, *x*₂₂} does not work.

Solution of transport problems

Transshipment problems

Conclusion

Notion of a loop

A loop is a sequence of at least 4 cells, such that :

1. Two consecutive cells are either in the same row or in the same column ;

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Solution of transport problems

Transshipment problems

Conclusion

Notion of a loop

A loop is a sequence of at least 4 cells, such that :

- 1. Two consecutive cells are either in the same row or in the same column ;
- 2. Any sub-sequence of three consecutive cells are *never* in the same row or column ;

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Solution of transport problems

Transshipment problems

Conclusion

Notion of a loop

A loop is a sequence of at least 4 cells, such that :

- 1. Two consecutive cells are either in the same row or in the same column ;
- 2. Any sub-sequence of three consecutive cells are *never* in the same row or column ;
- The last cell in the sequence has either a row or a column in common with the first ;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Solution of transport problems

Transshipment problems

Conclusion

Notion of a loop

A loop is a sequence of at least 4 cells, such that :

- 1. Two consecutive cells are either in the same row or in the same column ;
- 2. Any sub-sequence of three consecutive cells are *never* in the same row or column ;
- The last cell in the sequence has either a row or a column in common with the first ;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Solution of transport problems

Transshipment problems

Conclusion

The loop theorem

Theorem

Consider a transport problem with m producers and n consumers. The cells corresponding to a set of m + n - 1 variables do not contain any loop if and only if these variables form a basis solution.

Proof.

This theorem derives from the fact that a set of m + n - 1 cells do not contain any loop if and only if the m + n - 1 columns of A that correspond to these cells are linearly independent.

Transshipment problems

Conclusion 00

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Methods for finding an initial FBS

Finding an initial Feasible Basis Solution is much easier for transport problem than for generic Linear Programming problems. There are three classical methods

- 1. The upper-left corner method ;
- 2. The minimal cost method ;
- 3. The VOGEL method (not presented in this course).

Solution of transport problems

Transshipment problems

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The upper-left corner (ULC) method

• We start in the upper left cell with variable x_{11} , and we augment x_{11} as much as possible ;

Solution of transport problems

Transshipment problems

Conclusion

The upper-left corner (ULC) method

- We start in the upper left cell with variable *x*₁₁, and we augment *x*₁₁ as much as possible ;
- We eliminate from the tableau the row or column which is saturated. We lower by the value of x_{11} the row or column which is not, if any ;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Solution of transport problems

Transshipment problems

Conclusion

The upper-left corner (ULC) method

- We eliminate from the tableau the row or column which is saturated. We lower by the value of x_{11} the row or column which is not, if any ;
- We continue this procedure iteratively on the remaining sub-tableau ;

Solution of transport problems

Transshipment problems

Conclusion

The upper-left corner (ULC) method

- We start in the upper left cell with variable x_{11} , and we augment x_{11} as much as possible ;
- We eliminate from the tableau the row or column which is saturated. We lower by the value of x₁₁ the row or column which is not, if any ;
- We continue this procedure iteratively on the remaining sub-tableau ;
- In the case where the augmenting procedure saturates both the row and the column, we eliminate only one of them, not both;

Solution of transport problems

Transshipment problems

Conclusion

The upper-left corner (ULC) method

- We start in the upper left cell with variable *x*₁₁, and we augment *x*₁₁ as much as possible ;
- We eliminate from the tableau the row or column which is saturated. We lower by the value of x_{11} the row or column which is not, if any ;
- We continue this procedure iteratively on the remaining sub-tableau ;
- In the case where the augmenting procedure saturates both the row and the column, we eliminate only one of them, not both;
- If we have a 0 saturation value (as in the example) the solution is degenerate but valid;

Solution of transport problems

Transshipment problems

Conclusion

The upper-left corner (ULC) method

- We start in the upper left cell with variable *x*₁₁, and we augment *x*₁₁ as much as possible ;
- We eliminate from the tableau the row or column which is saturated. We lower by the value of x₁₁ the row or column which is not, if any ;
- We continue this procedure iteratively on the remaining sub-tableau ;
- In the case where the augmenting procedure saturates both the row and the column, we eliminate only one of them, not both;
- If we have a 0 saturation value (as in the example) the solution is degenerate but valid;

Solution of transport problems 00000

The upper-left corner (ULC) method

- We start in the upper left cell with variable x_{11} , and we augment x_{11} as much as possible :
- We eliminate from the tableau the row or column which is saturated. We lower by the value of x_{11} the row or column which is not, if any ;
- We continue this procedure iteratively on the remaining sub-tableau :
- In the case where the augmenting procedure saturates both the row and the column, we eliminate only one of them, not both :
- If we have a 0 saturation value (as in the example) the solution is degenerate but valid :
- The last case saturates both its row and column. In the end we have a sequence of n+m-1 variables that forms a basis.

Initial FBS =
$$\{x_{11} = 2, x_{12} = 3, x_{22} = 1, x_{32} = 0, x_{33} = 2, x_{34} = 1\}$$

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Justification of the ULC method

- All the variables found this way are positive (may be null);
- We assign m + n 1 variables;
- The last assignment saturates all *m* + *n* constraints, since all rows and columns are saturated;
- The ULC method ensures the sequence of variables assign contains no loop;
- Therefore by the loop theorem, the basis found is a FBS;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Weaknesses of the upper-left corner method

- The ULC method yields a FBS, which may be very far from optimal;
- Often the ULC method produces degenerate FBS (many zeros in the basis) ;
- The cost is not taken into account ;
- Other methods can fix these problems.

Solution of transport problems

Transshipment problems

Conclusion

The lowest cost (LC) method

• We start with the variable x_{ij} with the minimum transport cost;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Solution of transport problems

Transshipment problems

Conclusion

The lowest cost (LC) method

- We start with the variable x_{ij} with the minimum transport cost;
- We saturate its value and we close the corresponding row or column, decreasing the constraint accordingly in the non-closed row or column;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Solution of transport problems

Transshipment problems

Conclusion

The lowest cost (LC) method

- We start with the variable x_{ij} with the minimum transport cost;
- We saturate its value and we close the corresponding row or column, decreasing the constraint accordingly in the non-closed row or column;
- We repeat the procedure with all the non-closed cells ;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Solution of transport problems

Transshipment problems

Conclusion

The lowest cost (LC) method

- We start with the variable x_{ij} with the minimum transport cost;
- We saturate its value and we close the corresponding row or column, decreasing the constraint accordingly in the non-closed row or column ;
- We repeat the procedure with all the non-closed cells ;
- If saturating a variable would satisfy both the row and column, we close only one of them;

Solution of transport problems

Transshipment problems

Conclusion

The lowest cost (LC) method

- We start with the variable x_{ij} with the minimum transport cost;
- We saturate its value and we close the corresponding row or column, decreasing the constraint accordingly in the non-closed row or column ;
- We repeat the procedure with all the non-closed cells ;
- If saturating a variable would satisfy both the row and column, we close only one of them;

Solution of transport problems

Transshipment problems

Conclusion

The lowest cost (LC) method

- We start with the variable x_{ij} with the minimum transport cost;
- We saturate its value and we close the corresponding row or column, decreasing the constraint accordingly in the non-closed row or column ;
- We repeat the procedure with all the non-closed cells ;
- If saturating a variable would satisfy both the row and column, we close only one of them;

Solution of transport problems

Transshipment problems

Conclusion

The lowest cost (LC) method

- We start with the variable x_{ij} with the minimum transport cost;
- We saturate its value and we close the corresponding row or column, decreasing the constraint accordingly in the non-closed row or column ;
- We repeat the procedure with all the non-closed cells ;
- If saturating a variable would satisfy both the row and column, we close only one of them;
- When there is only once cell left, close both its row and column.

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Justification of the LC method

- Using the same arguments as for the ULC, the solution we find is an initial FBS;
- This time we can hope that the solution has a lower total cost than the ULC ;
- However it is possible to find unfavourable counter-examples for this method :

 The method of VOGEL can avoid these problems, but we don't consider it in this course.

The simplex for transport problems

Steps of the algorithm

- 1. As long as we have not found the optimum (see below), then iterate:
 - Determine which variable should enter the system (see below);
 - **1.2** Find the closed loop implicating the new variable and a subset of existing variables ;
 - **1.3** Enumerate the variables in the loop from the entering variable (with index 0) ;
 - **1.4** Find the odd index cell with the smallest value θ ;
 - **1.5** Augment by θ all the even index variables in the loop and reduce by θ all the odd index variables ;
 - **1.6** None of the other variables change.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Illustration on the electricity transport problem

We recall the electricity distribution problem of the previous course :

	Ville 1		Ville 2		V	Ville 3		ille 4	Offre
centrale 1	0	8	0	6	0	10	0	9	35
centrale 2	0	9	0	12	0	13	0	7	50
centrale 3	0	14	0	9	0	16	30	5	40
Demande	45		20		30		30		

Solution of transport problems

Transshipment problems

Conclusion

Resolution of the electricity problem

 Before initialization by the ULC Method

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Solution of transport problems

Transshipment problems

Conclusion

Resolution of the electricity problem

• After initialization by the ULC Method.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Solution of transport problems

Transshipment problems

Conclusion

Reduced costs

- Recall the formulat from the simplex method $\overline{\mathbf{c}}_{e}^{\mathsf{T}} = \mathbf{c}_{e}^{\mathsf{T}} \mathbf{c}_{b}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{E}.$
- Here we need to compute $\mathbf{c}_b^\mathsf{T} \mathbf{B}^{-1}$, which has the same length as \mathbf{c}_b , i.e. m + n 1.
- We write $\mathbf{c}_b^{\mathsf{T}} \mathbf{B}^{-1} = [u_2 u_3 \dots u_m v_1 v_2 \dots v_n]$, where u_i are the production constraints and the v_i the consumption constraints. Note that we have abandonned one constraints to keep m + n 1 equations.
- The reduced cost of a basis variable is zero, so for each basis variable *x*_{*ij*}, we have

$$c_{ij} = \mathbf{c}_b^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{a}_{ij}$$

where c_{ij} is the cost associated with variable x_{ij} and \mathbf{a}_{ij} the column of \mathbf{A} (minus its first line) associated with the same variable.

Solution of transport problems

Transshipment problems

Conclusion

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The electricity distribution LP problem

NOTE: we must eliminate on line in this matrix, for instance the first !

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Solution of transport problems

Transshipment problems

Conclusion

Illustration on the electricity problem

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Solution of transport problems

Transshipment problems

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Illustration on the electricity problem

 $u_3 + v_4 - 5 = 0$

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Illustration on the electricity problem

We see that if we write $u_1 = 0$, all the equations have the same form, i.e. $u_i + v_j = c_{ij}$ for the basis variable x_{ij} .

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Illustration on the electricity problem

We see that if we write $u_1 = 0$, all the equations have the same form, i.e. $u_i + v_j = c_{ij}$ for the basis variable x_{ij} .

Solution of transport problems

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Illustration on the electricity problem

We see that if we write $u_1 = 0$, all the equations have the same form, i.e. $u_i + v_j = c_{ij}$ for the basis variable x_{ij} .

Computing the remaining reduced costs

- Once we have computed the reduced costs \boldsymbol{u}_i and \boldsymbol{v}_j the rest is easy ;
- Indeed we apply the same column-wise technique and the usual reduced cost formula simplifies to :

$$\overline{c}_{ij} = c_{ij} - u_i - v_j$$

note: this formula applies to *all* costs, since reduced costs are zero for the basis variables.

In our example, this yields :

$$\overline{c}_{12} = 6 - 11 + 6 = -5 \ \overline{c}_{13} = 10 - 0 - 12 = -2$$

$$\overline{c}_{14} = 9 + 0 - 1 = 8 \qquad \overline{c}_{24} = 7 - 1 - 1 = 5$$

$$\overline{c}_{31} = 14 - 4 - 8 = 2 \qquad \overline{c}_{32} = 9 - 4 - 11 = -6$$

• Here we want to minimize costs, so we choose the most negative reduced cost, i.e. \overline{c}_{32} . Therefore x_{32} enters the basis.

Solution of transport problems

Transshipment problems

Conclusion

Swapping variables

- Here x_{32} must enter the basis ;
- This would create a unique loop $x_{32} x_{22} x_{23} x_{33}$;
- Numbering the nodes from the entering variable x₃₂, We consider the even-numbered nodes of this loop: x₂₂ et x₃₃. The smallest value, called θ, is θ = 10;
- We augment the odd-numbered nodes (so here x₃₂ and x₂₃ from the amount θ and we lower the even-numbered nodes by the same amount ;
- As a result, we have effectively swapped x_{33} with x_{32} .

Solution of transport problems

Transshipment problems

Conclusion

Swapping variables

- 10 9 8 6 35¹ 35 12 13 7 9 30^l 10^L 10^l 50 30 5 14 9 16 0 40 45 20 30 30
- We must recompute the reduced costs
- We must solve

- We must then recompute $\overline{c}_{ij} = c_{ij} u_i v_j$ for all the non-basis variables.
- We find the only negatives are

$$\overline{c}_{12} = -5, \overline{c}_{24} = -1, \overline{c}_{13} = -2,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• So x_{12} enters the basis.

Solution of transport problems

Transshipment problems

Conclusion

Swapping variables

- Variable x_{12} enters the basis ;
- This would create a unique loop $x_{12} x_{22} x_{21} x_{11}$;
- The even-numbered nodes from the entering variables are x_{22} et x_{11} . The value of θ is the smallest, i.e. 10;
- We augment the odd-numbered nodes $(x_{12} \text{ and } x_{21} \text{ by the amount } \theta$ and we lower the even-numbered nodes by the same amount ;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Effectively, we swap x_{22} with x_{12} .

Solution of transport problems

Transshipment problems

Conclusion

Swapping variables

- We recompute the reduced cost one more time
- We must solve

- We use the formula $\overline{c}_{ij} = c_{ij} u_i v_j$ for all non-basis variables.
- The only negative reduced cost is

$$\overline{c}_{13} = -2$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Therefore x_{13} enters the basis.

Solution of transport problems

Transshipment problems

Conclusion

Swapping variables

- Variable x₁₃ enters the basis ;
- This creates a unique loop x₁₃ x₂₃ x₂₁ x₁₁;
- The even-numbered nodes are x₂₃ et x₁₁. The value of θ is 25 (the lowest);
- We augment the odd-numbered nodes (i.e. x₁₃ and x₂₁ of the amount θ and we lower the even-numbered one by the same amount ;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Effectively, we swap x_{11} with x_{13} .

Solution of transport problems

Transshipment problems

Conclusion

Swapping variables

- We recompute the reduced costs
- We must solve

$$\begin{array}{rrrr} u_1 = 0 & u_1 + v_2 = 6 & u_1 + v_3 = 10 \\ u_2 + v_1 = 9 & u_2 + v_3 = 13 & u_3 + v_2 = 9 \\ u_3 + v_4 = 5 \end{array}$$

- We must compute $\overline{c}_{ij} = c_{ij} u_i v_j$ for all non-basis variables
- There are no negative reduced costs
- This is the optimum !
 - The optimum cost is z = 6 * 10 + 10 * 25 + 45 * 9 + 5 * 13 + 10 * 9 + 30 * 5 = 1020.

▲ロト▲圖ト▲目ト▲目ト 目 のへで

Solution of transport problems

Transshipment problems

Conclusion

Important notes

- There is always only one unique loop that appears when we add a variable to a basis ;
- This loop is not necessarily simple (consisting of 4 variables), contrary to what we have shown here.
- A loop contains an even number of nodes, in which no three nodes or more are consecutive (same row or same column), and does form a loop (starts and ends at the same node)
- We will show an example with a more complex transshipment problem.

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Définition of a transshipment problem

- A pure transport problem ships goods, products, etc from the producer to the consumer directly. It is represented by a bipartite graph;
- In a transshipment problem, there might exist intermediary nodes. The representation is an arbitrary directed graph ;
- However we can always transform transshipment problem into pure transport problems.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example of a transshipment problem

- Consider company *W* who makes toys. It has producing units in Montpellier, and in Douais. The Montpellier unit can produce 150 toys a day, the Douais one can produce 200 toys a day.
- The toys are sent by road to retailers in Lyon and Brest. Customers in these cities are expected to by 130 toys a day.
- Because of expensive road costs, it might be cheaper to exploit the railroad networks by going through Nevers and/or Castres. The cost matrix is as follows:

	Μ	D	Ν	С	L	В	
М	0	-	8	13	25	28	-
D	-	0	15	12	26	25	
Ν	-	-	0	6	16	17	
С	-	-	6	0	14	16	
L	-	-	-	-	0	-	
_						-	

Transshipment problems

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Transforming into a transport problem

- It is easy to transform this problem into a transport one ;
- Typically, we will split intermediary nodes into consumer and producer, and treat them separately.

Solution of transport problems

Transshipment problems

Conclusion

Rules for splitting nodes

- Intermediary nodes split in two halves have no transport cost between them;
- Their capacity (either as producer or consumer) is the total capacity of the network before the split.

The balanced equivalent transport problem for the toy transshipment is as follows:

Solution of transport problems

Transshipment problems

Conclusion

Inital basis for the toy problem

With the lowest-cost method, verify that one finds:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Improving the solution for the toy problem

Compute the u_i, v_j . In this problem, sometime loops are not simple, for instance for variable x_{33}

Solution of transport problems

Transshipment problems

Conclusion

Augmenting entering variables

- In such cases, we still number nodes in the loop from the entering variable, and find θ, the lowest value of the odd-numbered nodes, then augment the even-numbered variable by θ and lower the odd-numbered nodes by θ, as before (but there are more than two nodes to lower and more than two to augment).
- the number of nodes to lower and augment is the same (3 in this case).
- It may be that $\theta = 0$. In this case, augmentation is impossible with this non-basis variable, try with the next one in order from most negative.

Solution of transport problems

Transshipment problems

Conclusion • 0

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

- Transport, assignment and transshipment problems are particular cases of LP.
- They are not solved by the generic simplex algorithm, because more effective methods exist, that does not involve linear algebra;
- There is not extra costs involved in these problems when dealing with integers.

Solution of transport problems

Transshipment problems

Conclusion

General conclusion

- This course is an introduction to operations research;
- This is a very important domain in practice, plenty of jobs in this area, very few trained professionals;
- Application in industry: 20% of containers ship empty to the USA (!)
- New theoretical results: it is possible under some conditions to process signals beyond the sampling limit of Shannon (Emnanuel Candes (France) and Terence Tao (Australia), Fields medalist 2008), opening the field of *compressive sensing*).
- Very few people know optimization, please let me know if you are interested in this area.