
IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Integer Linear Programming
Solution : cutting planes and Branch and Bound

Hugues Talbot

Laboratoire CVN

April 13, 2018

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Plan

IP Resolution

Gomory’s cutting planes

Solution branch-and-bound

General method

Resolution

General Algorithm

Remarks and discussion

B&B et A⋆

Problèmes classiques

knapsack

Planification

TSP

Binary problems

Conclusion

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Principle

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Initial formulation

• Consider a linear “relaxation” of an IP problem. This is the
corresponding LP for which the optimal solution is X∗.

• If X∗ is integer, this is the optimal solution.
• If it is not, X∗ is fractionnary .

• Consider the basis corresponding to the LP optimal

solution

AX = BXb + EXe = b ⇒ Xb = B−1[b− EXe]; b̄ = B−1b.

with b̄i = B−1b fractionnary.

• We have

Xbi = etiB
−1[b− EXe]

où eti = [000 . . . 1 . . . 00]
posi

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Formulation (next)

• So :
Xbi = etiB

−1b− etiB
−1EXe

= b̄i − αiXe

interpreting :

αi = etiB
−1E (i.e: line i of B−1E)

• By reordering:

Xbi + αiXe = b̄i
Xbi +

∑

j α
i
jXej = b̄i [1])

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Integer part/ fractionnary part

• Definition : let a be a non-integer

• int(a) = greatest integer ≤ a.
• frac(a) = a− int(a)(therefore ≥ 0).

• From [1] we have :

Xbi +
∑

j [int(αi
j) + frac(αi

j)]Xej = int(b̄i) + frac(b̄i)

Xbi +
∑

j int(αi
j)Xej +

∑

j frac(αi
j)Xej = int(b̄i) + frac(b̄i) [2])

with frac(αi
j) ≥ 0 and Xej ≥ 0.

• so

Xbi +
∑

j

int(αi
j)Xej ≤ int(b̄i) + frac(b̄i)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Gomory cut

• However Xbi is integer and so is Xej .

• therefore

Xbi

∑

j

int(αi
j)Xej ≤ int(b̄i) [3]

• from [3]–[2] we deduce

−
∑

j frac(αi
j)Xej ≤ − frac(b̄i)

∑

j frac(αi
j)Xej ≥ frac(b̄i) [4]

[4] is a Gomory cut

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Example

• Consider the following problem :

max x1 + x2
3x1 + 4x2 ≤ 15
x1 − 4x2 ≤ 0

• In standard form :

3x1 +4x2 +x3 = 15
x1 −4x2 +x4 = 0

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Cut 1

• Optimal solution: basis Xb =

[

x1
x2

]

, B =

[

3 4
1 −4

]

• Inverse : B−1 = − 1

16

[

−4 −4
−1 3

]

=

[

1/4 1/4
1/16 −3/16

]

• Solution :

b̄ = B−1b =

[

1/4 1/4
1/16 −3/16

] [

15
0

]

=

[

15/4
15/16

]

• Cut (1) : α1 = [1
4

1

4
], b̄1 = 15

4
1

4
x3 +

1

4
x4 ≥

3

4

x3 + x4 ≥ 3 cut (1)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Cut 2

• Cut (2) :

α2 = [1

16
− 3

16
], b̄2 =

15

16
, Careful! frac(α2) = [1

16

13

16
]

1

16
x3 +

13

16
x4 ≥

15

16

x3 + 13x4 ≥ 15 cut (2)

• These are not very interesting, now we express the

out-of-basis variables in terms of the basis variables:

x3 = 15 −3x1 −4x2
x4 = −x1 +4x2

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Final cut

• By substituting in cut 1:

15− 3x1 − 4x2 − x1 + 4x2 ≥ 3
12 ≥ 4x1
x1 ≤ 3

• By substituting in cut 2 :

15− 3x1 − 4x2 − 13x1 + 52x2 ≥ 15
−16x1 + 48x2 ≥ 0

x1 − 3x2 ≤ 0

• We add the cuts to the original problem, and this time we

obtain :

b̄ = [3, 3
2
], we need another iteration.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Note on the Gomory cuts

• It is possible to show that the method converges rapidly. In

practice one component of the solution becomes integer at

each iteration

• However, the number of variables double every iteration,

so the complexity is exponential.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Solution by branch and bound

• Gomory’s cut provide an algorithmic solution to IP

problems.

• In the case where both constraints and variables are

rational (or integer), Gomory’s algorithm converges in finite

time.

• Cuts attack the problem from the outside, which may be

inefficient in some configurations.

• It is also possible to attack the problem from the inside: we

will separate the domains and evaluate which domain to

explore first. This is the branch-and-bound method.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Tables and chairs

• A company produces tables and chairs;

• A table requires 1h of work and 9 m2 of wood ;

• A chair requires 1h of work et 5m2 of wood ;

• Our resources are 6h of work and 45 m2 of wood ;

• Each table generates a profit of 8 ¤, and each chair 5 ¤;

• Formulate and solve the associated IP problem.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Formulation

This is a possible formulation:

max z = 8x1 + 5x2
x1 + x2 ≤ 6
9x1 + 5x2 ≤ 45

xi ≥ 0, xi ∈ N.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Representation

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

General Method

• We start from solving the LP relaxation as before, we

obtain:
z = 165

4
= 41.25

x1 = 15

4

x2 = 9

4

• If the solution is integer, we stop, this is optimal. If not, the

z value obtained is an upper bound for the integer solution

(why?).

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

General method (next)

• If the solution is not integer, we partition the domain. We

choose arbitrarily one of the variables that is still

fractionary, for instance here x1.

• We impose extra constraints due to the nature of the

variables, here either x1 ≤ 3, or x1 ≥ 4 (Question : why can

we eliminate the solution 3 < x1 < 4 ?)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Separation

• We now have two subproblems:

2. Initial problem + constraint x1 ≥ 4
3. Initial problem + constraint x1 ≤ 3.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Representation (2)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Recursion

• We now have eliminated the region that used to contain

the LP solution, however we have retained all the integer

parts of the domain

• We now have two sub problems we can try to solve with LP.

• We choose one of them arbitrarily, for instance problem 2.

• The solution of the LP relaxation for region 2 is

z = 41
x1 = 4
x2 = 9

5

This is point C.

• This is the first branch of a tree.

• Since x2 is still fractionnary, we can decide to separate on

this variable. We split region 2 into two zones : The one for

x2 ≥ 2 and the one for x2 ≤ 1.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Tree (1+2)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

New branch (4 + 5)

• We now have two new sub-problems

4. Problem 2 + constraint x2 ≥ 2
5. Problme 2 + constraint x2 ≤ 1.

• It is preferable to explore the tree depth first (we will see

later why). We choose one of these new sub-problems, for

instance problem 4. However this problem is not feasible in

integers.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Representation (4 + 5)

1 2 3

4

5 6

7

8

9

1

2

3

4

5

6

z=20

Sous-problemes 4+5

9x1 + 5x2

x1+x2

x1

x2

AB

C

F

ED

G

2

3

H I

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Bounding (4 + 5)

• We realize that sub-problem 4 (région x2 ≥ 2) is not

feasible in integers.

• By solving the relaxed LP associated with sub-problem 5,

we find the optimum I with

z = 365/9 = 40.555 . . .
x1 = 40

9
= 4.444 . . .

x2 = 1

• we must branch on x1, with the constraints

6. Problem 5 + constraint x1 ≥ 5
7. Problem 5 + constraint x1 ≤ 4.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Tree for (4+5)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Branch (6+7)

• We are faced with two new problems. As usual, we

eliminate the fractionnary solution by branching it.

• We keep trying to scan the tree depth first, by testing one

of the new cases (6 et 7). Arbitrarily we choose 7.

• The relaxed LP solution is now:

z = 37
x1 = 4
x2 = 1

This solution is feasible in integer, this corresponds to point

H. This is a candidate solution, that provides us with a

lower bound on the final result.

• We stop branching from here.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Tree (7)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Bounding (6)

• Continuing depth first, we evaluate sub-problem 6.

• We find the following solution (point A).

z = 40
x1 = 5
x2 = 0

This is also a candidate solution. Now our lower bound is

improved to 40.

• Therefore candidate solution of problem 7 is not optimal

• We do not need to branch further from 6.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Tree (6)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Bounding (3)

• We backtrack to the solution for (3). We find the solution

for F :

x1 = 3
x2 = 3
z = 39

• This result is less than 40, our current lower bound. This

branch cannot produce a better result than the one we

already have.

• We have now explored or bounded every node in the tree,

so we have found our optimum: build 5 tables et 0 chairs

for a profit of 40¤.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Arbre (3)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Node labelling

• The branch-and-bound algorithm labels all the points of the

feasible region, some in a explicit and other in an implicit

manner.

• For instance, point (x1 = 2, x2 = 3) is included in

sub-problem 3, for which the optimum is (3, 3). There is no

point in actually evaluating it.

• The algorithm implements “divide and conquer”. It

necessarily converges due to the fact that it always

eliminate at least one point from the feasible region at each

step , and these points are in finite numbers.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Sterilizing nodes

1. A note that is not necessarily to branch on is said to be
sterile. There are several cases where this might happen:

1.1 The node is associated with a candidate solution.

Branching on it will not improve it.

1.2 The node is associated with an unfeasible sub-problem.
Branching on it will not make if any more feasible.

1.3 The z-value of the node is less than that of the best-known

solution so far, even if it is not a candidate solution.
Branching will not improve it.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Backtracking

• We can solve branch-and-bound problems either depth or

breadth first. The latter would correspond to exploring all

the subproblem at one level rather than one particular

branch all the way to the bottom first. E.g., in the previous

problem we would explore (3) before (4) or (5).

• In practice, depth first works better because doing so

quickly converges to a candidate solution or an unfeasible

subproblem, allowing branches to be sterilized quicker.

• Note : branch-and-bound is not a greedy algorithm: it does

backtrack.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Solving mixed problems

• On mixed problems, we only branch on the integer

variables !

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Generalization of branch-and-bound

• The LP relaxed problem is only an heuristic.

• Sometimes can be replaced by something more

appropriate

• Example : knapsack (see TD).

• Linked with A⋆ in combinatorial optimization.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Knapsack

• Reminder : a knapsack (problème de sac à dos) is a

problem with a single constraint

max z =
∑

i cixi
∑

i aixi ≤ b

with xi ∈ {0, 1}

• Branching on xi yields a branch on xi = 0 and a branch on

xi = 1.

• The LP relaxation is simplified by remarking that we can

sort the variables in order of decreasing ci
ai

. The variables

with the best ratio are preferable.

• See associated TD.

• A knapsack can also be solved with dynamic programming.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Planification

• Planification problems, with deadlines, and so on are very

common.

• For instance :

Length deadline

task 1 6 8

task 2 4 4

task 3 5 12

task 4 8 16

• The table is interpreted this way : task 1 required 6 days

and must be completed by close of business on day 8.

• Each late day incurs penalties. We must minimize these.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Solution by branch and bound

• We can use the following variables :

xij =

{

1 if task i is in position j
0 otherwise

• It is efficient to assign the last task first, and to bound the

total minimal delay by summing the duration of all assigned

and remaining tasks, minus the delay for the last task.

• For instance, if task 3 is the last, (x34 = 1), a bound for the

delay is at least 6 + 4 + 8 + 5− 12 = 23− 12 = 11.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Solution by B& B, next

• Then, in the tree, one branches by assigning more tasks

before the last one (and so on). We bound by summing the

estimated delays. For instance, if task 3 is last, and then

task 4 is the one before last (penultimate), the total delay

cannot be less than 11 + (6 + 4 + 8− 16) = 11 + 2 = 13.

• It is possible to check that the optimal scheduling is 2-1-3-4

with a total delay of 12 days.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Travelling Salesperson Problem

• Note the politically correct version...

• We have a number of cities we all want to visit at the lowest

possible cost.

• Here is a cost matrix, where cij represents the cost of

going from city i to city j :

city 1 city 2 city 3 city 4 city 5

city 1 0 132 217 164 58

city 2 132 0 290 201 79

city 3 217 290 0 113 303

city 4 164 201 113 0 196

city 5 58 79 303 196 0

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

TSP (II)

• The minimum cost trip is a Hamiltonian cycle.

• To solve by B&B, we need some means to branch and to

bound. One solution is to transform the problem into an

assignment one, with cost matrix c : Let the xij be a set of

binary variables. If xij = 1 then the trip from city i to city j
is done, 0 otherwise.

• We will learn how to solve assigmnent problem very

efficiently in the next lecture.

• In this case, if x12 = x24 = x45 = x53 = x31 = 1, then we

chose the circuit 1-2-4-5-3-1.

• If the assignment solution produces a circuit then it is

optimal (why ?). However an assignment may not generat

circuits, for instance one may obtain

x15 = x21 = x34 = x43 = x52 = 1, which has two

non-connex subcircuit.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

TSP (III)

• One must also impose i 6= j. This is achieved with cii = M
a large number.

• We can for instance start from the assignment problem,

then split by eliminating some sub-circuit. We do so by

imposing than one or the other of an invalid sub-circuit be

a large M .

• We split on whether we forbid either i to j or j to i.

• For instance, from the initial problem with the cost matrix

given earlier (with cii = M), the first assignment is

x15 = x21 = x34 = x43 = x52 = 1.

• We have two sub-circuit : 1-5-2-1 et 3-4-3. we can

eliminate 3-4-3, either via imposing c34 = M , or the

converse c43 = M . (Q: why is this legitimate ?)

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

TSP (IV)

• We can relatively easily verify that the optimal solution is

x15 = x24 = x31 = x43 = x52 = 1, i.e. the circuit 1-5-2-4-3-1

for a cost z = 668.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Binary problems by implicit enumeration

• Binary problems are a large class (BP) in IP.

• Remark : any IP is expressible in BP (via decomposition

over the powers of 2)

• There exist particular BP solutions for instance, for

instance the implicit enumeration method : superior

branches represent fixed variables. we branch on the

variable that improves the solution the most (like in

knapsack), as long as it is feasible.

• Even if a solution is unfeasible it will help bounding the

solutions.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Sudoku

See Matlab TP.

IP Resolution Solution branch-and-bound General Algorithm Problèmes classiques Conclusion

Conclusion

• The LP provides a relaxation for integer programming (IP)

or mixed integer programming (MIP) problems

• All IP and MIP converge in finite time but complexity may

be exponential.

• However the LP relaxation provides upper and lower

bounds that improve as we explore branches.

• In some cases, a better bounding function can exist than

the simplex, however the general formulation remains the

same.

• quality and speed of result depends on this bounding

function.

• Many links with heuristics A⋆, some graph algorithms, etc.

• In general IP problems solvable by B&B are difficult, but

not always.

	IP Resolution
	Gomory's cutting planes

	Solution branch-and-bound
	General method
	Resolution

	General Algorithm
	Remarks and discussion
	B&B et A

	Problèmes classiques
	knapsack
	Planification
	TSP
	Binary problems

	Conclusion

