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Integers vs. Real numbers

• So far we have only seen LP with constraints and variables

that are real numbers (variables must be positive for the

simplexe).

• One way to extend the application field is to require that

some or all aspects of the problem deal only with integers.

• In the case where all constraints and all variables are

integers, these problems are called integer programs (IP)

• In the case where only some variables or some constraints

are expressed in integers, this is called a mixed program

(MP, MIP or sometimes MILP).
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Example

• Maximize z = x1 + x2

• with
−2x1 + 2x2 ≥ 1
−8x1 + 10x2 ≤ 13

• and x1, x2 ≥ 0

• With the simplex, the real number optimum is

{x1 = 4, x2 = 9/2}.

• If the xi are constrainted to be integers, the optimum is

{x1 = 1, x2 = 2} (very different !)

• How can we move from the real to the integer solution ?

Using the closest integer that meet the constraints is not

realistic, it might be very far from the optimum.
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IP problems categories

1. Problems with discrete I/O: production of objects, etc ;

2. Problems with logic conditions: addition of variables with

extra constraints. (for exemple : if product A is made, then

also make products B or C...)

3. Combinatorial problems: sequences, ressource allocation,

timetables, all NP problems can be formulated as IP.

4. Non-linear problems can often be formulated as IP. Useful

when the feasible region is non-convex.

5. Network and graph problems, e.g. graph coloring.
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Remarks on IP problems

• Many models fall into the second category (linear pb. with

extra logic conditions), thus many problems are LP with

only some integer variables added.

• IP formulations are useful (with experience) for modeling a

huge class of problems. Perhaps contrary to expectations,

restricting conditions leads to a larger class of problems

that can be modeled ;

• However, modeling a problem is not solving it. In general

IP solving is NP-hard and so solvers have non-polynomial

complexity

• The complexity of the solution often depends on the

formulation!
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Decisions variables

• Among integer variables are Boolean variables that can

only take value 0 or 1.

• Such variables are often used in MP for representing

décisions : implications, links between variables, etc.

• E.g; decision variables and indicator variables.
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Example: a selection problem

• Let there be 4 possible choices, each necessitating

resources and yielding an outcome:
choice resources yield

1 5 16

2 7 22

3 4 12

4 3 8

• We only have 14 resources units available.

• How to maximise the yield ?

• Extentions :

1. We must make at most two choices
2. Choice 2 is only available if Choix 1 is also taken.
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Choice problem : formulation

• We use boolean variables (0 and 1), for instance

xj, j ∈ {1, . . . , 4} =

{

1 Choice taken

0 otherwise

• We maximize z = 16x1 + 22x2 + 12x3 + 8x4

• Subject to

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

• Optional constraints :

1. x1 + x2 + x3 + x4 ≤ 2
2. x1 ≥ x2 ⇔ −x1 + x2 ≤ 0
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Indicator variables

• We suppose that x models a (real) quantity of some

ingredient to be included in some mix/recipe. We wish to

distinguish x = 0 from the case x > 0.

• We introduce the variable δ, which is worth 1 only when

x > 0, with the constraint

x−Mδ ≤ 0,

with M a known coefficient representing an upper bound

for x.

• with this (linear) constraint, we do have x > 0 ⇒ δ = 1.
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Indicator variables: followup

• For the opposite implication, (x = 0 ⇒ δ = 0), this is a little

harder. This implication is equivalent to δ = 1 ⇒ x > 0.

• We introduce a less severe notion : δ = 1 ⇒ x > m, with m
an acceptable minimum level under which we consider x
unused (this is application-dependent). An equivalent

constraint is then

x−mδ ≥ 0.
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Fixed load problem

• Example : unit of energy production

• This is a general case featuring production costs and

marginal costs.

• Generated power is either Pi = 0, or Pm
i ≤ Pi ≤ PM

i .

• with a cost:

Ci =

{

0 Production unit is stopped

ai + biPi Otherwise

• We wish to produce a certain power level at least cost.

• The cost is here non-linear and even non-continuous,

obviously an LP cannot represent the problem well

• How can we at least formulate the problem
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Fixed load problem as an IP

• We introduce the variable

xi =

{

0 Unit i stopped

1 Otherwise

• Constraints are

xiP
m
i ≤ Pi ≤ xiP

M
i

• with

Ci = aixi + biPi

(and not Ci = aixi + biPixi, which would not be linear).

• Note : condition Pi = 0, xi = 1 is feasible but has a higher

cost compared to the case Pi = 0, xi = 0, and so cannot

be part of the optimum.
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Assignment problems

• We are considering n tasks assigned to n persons ;

• only one task is assigned to a person ;

• the yield corresponding to task i associated to person j is

given by a matrix Cij ;

• we wan to maximize the yield ;

• Formulation ?

• Extended formulation: case when the number of persons is

greater than the number of tasks.
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Assignment formulation

• We introduce the variables xij

xij =

{

1 task i assigned to person j

0 otherwise

• constraints :

∑n
i=1

xij = 1(only one task assigned to j)
∑n

j=1
xij = 1(each task assigned only once)

• Maximize

z =

n
∑

i=1

n
∑

j=1

Cijxij
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Extended assignment problem

• If the number of persons > number of tasks, i.e n persons,

m tasks, n > m :
∑m

i=1
xij ≤ 1, j = 1, . . . , n

• Sum of the tasks assigned to person j is ≤ 1 :
∑n

j=1
xij, i = 1, . . . ,m

• Sum of persons assigned to task i is = 1: we add some

slack variables :

sj +
∑m

i=1
xij = 1, j = 1, . . . , n

• Maximize the same profit

z =

n
∑

i=1

n
∑

j=1

Cijxij
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Another way to formulate the problem: transport

problem

We will see how to formulate and solve such problems

efficiently in the last two lectures

• assignment problems

• integer constraints

• max value of xij is 1, min = 0, thus a boolean problem.
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Convert Boolean algebra problems into linear algebra

IP with Boolean variables

• We introduce

δi =

{

1 if xi is true

0 else

•
xi true ↔ δi = 1
xi false ↔ δi = 0
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Boolean operations

∼ negation

∧ logical AND

∨ logical OR

⇒ Implication

⇔ equivalence

⊕ exclusive OR

T TRUE

F FALSE
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Some operators

x1 ∨ x2 = T ⇔ δ1 + δ2 ≥ 1
x1 ∧ x2 = F ⇔ δ1 = 1, δ2 = 1
∼ x1 = 1 ⇔ δ1 = 0
x1 ⇒ x2 ⇔ δ2 ≥ δ1
x1 ⇔ x2 ⇔ δ1 = δ2
x1 ⊕ x2 = T ⇔ δ1 + δ2 = 1
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Combinations of logical and continuous variables

• Logical variable = indicator (e.g. open/closed, cold/hot)

• case xi = [f(xi) ≤ 0], so let δi = 1 if xi = T .

•
δi = 1 if f(xi) ≤ 0
δi = 0 if f(xi) ≥ ε (precision)

• We consider
M = maxxi

(f(xi))
m = minxi

(f(xi))
,

M > 0,m < 0.
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Algebraic equations

f(xi) ≤ M(1− δi)
f(xi) ≥ ε+ (m− ε)δi

1. if δi = 1, then f(xi) ≤ 0, f(xi) ≥ m.

2. if δi = 0, then f(xi) ≤ M,f(xi) ≥ ε.

3. if f(xi) ≥ 0, then δi = 0 (see proof on blackboard)

4. if f(xi) ≤ 0, then δi = 1 (same)
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Product of Boolean variables

• Consider the non-linear product δ3 = δ1δ2, this leads to

non-linear constraints.

• To transform it into a series of linear constraints, we write

δ3 ≤ δ1, δ3 ≤ δ2
δ3 ≥ δ1 + δ2 − 1

we verify equivalence :

1. δ1 = 0, δ2 = 0 ⇒ δ3 ≤ 0 ⇒ δ3 = 0
2. δ1 = 1, δ2 = 0 ⇒ δ3 ≤ 0, δ3 ≥ 0 ⇒ δ3 = 0
3. same for δ1 = 0, δ2 = 1
4. δ1 = 1, δ2 = 1 ⇒ δ3 ≤ 1, δ3 ≥ 1 ⇒ δ3 = 1
5. inversely : δ3 = 1 ⇒ δ1 ≥ 1, δ2 ≥ 1, δ1 + δ2 ≤ 2, therefore

δ1 = δ2 = 1.
6. δ3 = 0 ⇒ δ1 ≥ 0, δ2 ≥ 0, δ1 + δ2 ≤ 1 so we have at most one

of δ1 or δ2 equal to zero.
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Product of a binary variable and a continuous variable

• Consider the non-linear product of tow variables, one being

continuous and the other Boolean: δf(x), i.e :

y =

{

0 if δ = 0
f(x) if δ = 1

• We set the following constraints :















y ≤ Mδ
y ≥ mδ
y ≤ f(x)−m(1− δ)
y ≥ f(x)−M(1− δ)
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Continuous-Boolean product, next

1. Let δ = 0, therefore y ≤ 0, y ≥ 0, so y = 0.

Also f(x)−M ≤ y ≤ f(x)−m, therefore f(x)−M ≤ 0
and f(x)−m ≥ 0, which is non-critical.

2. Let δ = 1, then

y ≤ M (non-critical)

y ≥ m (non-critical)

y ≤ f(x)
y ≥ f(x)















y = f(x)

3. The opposite way is also correct : y = f(x) ⇔ δ = 1.
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Applications

• Dynamical and logic systems

Example:

X(t+ 1) =

{

0.8X(t) +U(t) if X(t) ≥ 0
−0.8X(t) +U(t) if X(t) < 0

with −10 ≤ X ≤ 10, −1 ≤ U ≤ 1.

• Piecewise affine (linear) systems (e.g. income tax

optimization).

• Finite-state automata.
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A few problems in combinatorial optimization

1. General IP problem

min C
T
x

Ax ≤ b

xi integers

2. Special case: Boolean programming

min C
T
x

Ax ≤ b

xi = 0 or 1,x ∈ B
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Typical problems - I

3. Integer Knapsack: only one constraint

max C
T
x

a
T
x ≤ b

x ∈ B

Note : a > 0, else, x′i = 1− xi.

4. Multiple Knapsack

max C
T
x

Ax ≤ b

x ∈ B

Note : ∀i, j, Aij ≥ 0.
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Typical problems - II

5. Coupling (a.k.a. set matching)

max C
T
x

Ax ≤ 1 ( vector of 1s )

x ∈ B

Note : ∀i, j, Aij ∈ B,x ∈ B.

6. Set covering

min C
T
x

Ax ≥ 1 ( vector of 1s )

x ∈ B

Note : ∀i, j, Aij ∈ B,x ∈ B.
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Typical problems - III

7. Set partitionning

min CTx

Ax = 1 ( vector of 1s )

x ∈ B

Note : ∀i, j, Aij ∈ B, x ∈ B.

Special case: assignment problems
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Example of a set covering problem

Let there be some city, composed of the following

neighborhoods (”arrondissements”)

We are tasked with building a number of hospitals that will take

care of medical emergencies in their own and adjacent

neighborhoods. We must minimize the number of hospitals to

be built.
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Formulation of the hospitals problem

• Let there be a Boolean variable xi associated with each

neighborhood. If xi is 1, this means a hospital will be built

in neighborhood i, and none will be built in this

neighborhood if it is zero.
• Here is a possible formulation

min
∑

i
xi, subject to:

x1 + x2 + x3 + x4 ≥ 1

x1 + x2 + x3 + x5 ≥ 1

x1 + x2 + x3 + x4 + x5 + x6 ≥ 1

x1 + x3 + x4 + x6 + x7 ≥ 1

x2 + x3 + x5 + x6 + x8 + x9 ≥ 1

x3 + x4 + x5 + x6 + x7 + x8 ≥ 1

x4 + x6 + x7 + x8 ≥ 1

x5 + x6 + x7 + x8 + x9 + x10 ≥ 1

x5 + x8 + x9 + x10 + x11 ≥ 1

x8 + x9 + x10 + x11 ≥ 1

x9 + x10 + x11 ≥ 1

• We need to “cover” the set of neighborhoods optimally: a

solution is given by x3 = x8 = x9 = 1 and the rest 0. A

solution with three hospitals is not unique but is optimal.
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Conclusion

• Many problems can be modelled by integer or mixed

programming (IP or MP).

• E.g: logic problems, assignment, set problems, etc.

• IP and MP are powerful tools for modelling.

• To solve these problems, we need to answer these
questions:

• existence of a solution ?
• unicity ?
• algorithm for a resolution ?

• We shall see that IP and MP are generally NP-hard, so

difficult to solve exactly.

• There exists to principal methods for solving them: the

Gomory plane-cutting method and Branch-and-bound.
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