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Application of the simplex

• The algorithm is described for a minimization of z, to

maximize, just minimize −z.

• Finding an initial basis is not always trivial

• The algorithm yields a basis and one extreme value of the

variables. The rest must be found by resolving B−1b

• There are several limit cases, which we must take into

account
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Unique optimal solution

• A cabinet maker produce desks, tables and chairs

• Each kind requires wood, and two types of work :

woodworking and finishing
Resource desk tables chairs

planks 8m 6m 1m

woodwork 4h 2h 1.5h

finishing 2h 1.5h 0.5h

• We have 48m of wood planks, 20h of woodworking and 8h

of finishing

• A desk yields a profit of 60 euros, a table 30 euros and a

chair 20 euros

• Demand for chairs and desks is unlimited but we think

there is a market for 5 tables at the most

• Maximize profit.



Limit cases Unique solution Multiple solution Unbounded solutions

Formulation

• Variables : x1 = nb. desks, x2 = tables, x3= chairs

• Objective : max z = 60x1 + 30x2 + 20x3

• Constraints :

8x1 + 6x2 + x3 ≤ 48
4x1 + 2x2 + 1.5x3 ≤ 20
2x1 + 1.5x2 + 0.5x3 ≤ 8

x2 ≤ 5

x1, x2, x3 ≥ 0
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Standard form

All inequalities are ≤, so we have slack variables (and not
excess)

min z = −60x1 − 30x2 − 20x3

8x1 + 6x2 + x3 + x4 = 48

4x1 + 2x2 + 1.5x3 + x5 = 20

2x1 + 1.5x2 + 0.5x3 + x6 = 8

x2 + x7 = 5
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First iteration

• Initially :

A =









8 6 1 1 0 0 0
4 2 1.5 0 1 0 0
2 1.5 0.5 0 0 1 0
0 1 0 0 0 0 1









, b =









48
20
8
5









CT =
[

−60 −30 −20 0 0 0 0
]

• Initial basis is IBV={x4, x5, x6, x7} Therefore we have

B =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, b̄ =









48
20
8
5









, E =









8 6.0 1.0
4 2.0 1.5
2 1.5 0.5
0 1.0 0.0








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First iteration – change of variables

• Reduced costs c̄
⊺

e = c
⊺

e − c
⊺

b
B−1E

x1 x2 x3
c
⊺

e = [ -60 -30 -20 ]
Therefore x1 (the min) enters the basis.

• P = B−1A1 = [ 8 4 2 0 ]⊺

• ratios :
x4 x5 x6 x7

b̄

P
= 6 5 4 ∞

therefore x6 (the positive min) exits the basis.
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Second iteration

• We have now IBV={x4, x5, x1, x7}

B =









1 0 8 0
0 1 4 0
0 0 2 0
0 0 0 1









, b̄ =









16
4
4
5









, E =









6 1 0
2 1.5 0
1.5 0.5 1
1 0.0 0









• Reduced costs c̄
⊺

e = c
⊺

e − c
⊺

b
B−1E

x2 x3 x6
c
⊺

e = [ 15 -5 30 ]

Therefore x3 (the min) enters the basis

• P = B−1A3 = [−1 0.5 0.25 0 ]⊺

• ratios :
x4 x5 x1 x7

b̄

P
= -16 8 16 ∞

, therefore x5 (the min for which

P is positive) exists the basis
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Third iteration

• We have now IBV={x4, x3, x1, x7}

B =









1 1.0 8 0
0 1.5 4 0
0 0.5 2 0
0 0 0 1









, b̄ =









24
8
2
5









, E =









6 1 0
2 1 0
1.5 0 1
1 0 0









• Reduced costs c̄
⊺

e = c
⊺

e − c
⊺

b
B−1E

x2 x5 x6
c
⊺

e = [ 5 10 10 ]
This is the optimum !
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Solution

• The solution is made up of variables in the basis solution,

here

IBV={x4, x3, x1, x7}

• The values of these variables are given by

b̄ = {24, 8, 2, 5}

respectively. All the others are at zero

• The cost function is therefore :

z = −60x1 − 30x2 − 20x3 = −280
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Multiple optimal solutions

• We consider the same problem, only this time we assume

a table returns a profit of 35 euros instead of 30

• The rest is unchanged
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First iteration (table=35 Euros)

• Initally IBV={x4, x5, x6, x7} which yields

B =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, b̄ =









48
20
8
5









, E =









8 6 1
4 6 1.5
2 1.5 0.5
0 1.0 0









• Reduced costs c̄
⊺

e = c
⊺

e − c
⊺

b
B−1E

x1 x2 x3
c
⊺

e = [ -60 -35 -20 ]

Therefore x1 (the min) enters the basis

• P = B−1A1 = [ 8 4 4 0 ]⊺

• ratios :
x4 x5 x6 x7

b̄

P
= 6 5 4 ∞

therefore x6 (the min so that P is positive) exists the basis
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Second iteration (table at 35 Euros)

• We have now IBV={x4, x5, x1, x7} which yields

B =









1 0 8 0
0 1 4 0
0 0 2 0
0 0 0 1









, b̄ =









16
4
4
5









, E =









6 1 0
2 1.5 0
1.5 0.5 1
1 0.0 0









• Reduced costs c̄
⊺

e = c
⊺

e − c
⊺

b
B−1E

x2 x3 x6
c
⊺

e = [ 10 -5 30 ]

Therefore x3 (the min) enters the bass.

• P = B−1A3 = [−1 0.5 0.25 0 ]⊺

• ratios :
x4 x5 x1 x7

b̄

P
= -16 8 16 ∞

so x5 (the min such that P is positive) exits the basis
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Third iteration (tables at 35 Euros)

• We have now IBV={x4, x3, x1, x7} therefore

B =









1 1.0 8 0
0 1.5 4 0
0 0.5 2 0
0 0 0 1









, b̄ =









24
8
2
5









, E =









6 1 0
2 1 0
1.5 0 1
1 0 0









• Reduced costs c̄
⊺

e = c
⊺

e − c
⊺

b
B−1E

x2 x5 x6
c
⊺

e = [ 0 10 10 ]

We have found an optimum, but x2 is zero, this indicates a

non-unique solution. We can now make x2 enter at a

constant cost.

Therefore x2 (the min) enters the basis.
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Third iteration, continued

• We continue the calculation normally :

• P = B−1A3 = [−2 −2 1.25 1 ]⊺

• ratios :
x4 x3 x1 x7

b̄

P
= -12 -4 1.6 5

So x1 (the min for which P is positive) exits the basis
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Fourth iteration (tables at 35 Euros)

• We now have IBV={x4, x3, x2, x7} As a result

B =









1 1.0 6 0
0 1.5 2 0
0 0.5 1.5 0
0 0 1 1









, b̄ =









27.2
11.2
1.6
3.4









, E =









8 0 0
4 1 0
2 0 1
0 0 0









• Reduced costs c̄
⊺

e = c
⊺

e − c
⊺

b
B−1E

x1 x5 x6
c
⊺

e = [ 0 10 10 ]

We have found an un optimum, but x1 is zero. This

indicates a non-unique solution, since x1 can enter the

basis with a constant cost.
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Fourth iteration – the end

If x1 enters the basis again, we have the same solution as

above :

• P = B−1A3 = [−2 −2 1.25 1 ]⊺

• ratios :
x4 x3 x2 x7

b̄

P
= 17 7 2 -4.25

x2 (the min for which P is positive) exits the basis. We have

discovered a cycle.
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Solution

• The solution is made of the possible feasible basis

variable, here :

IBV1 = {x4, x3, x1, x7}IBV2 = {x4, x3, x2, x7}

as well as all their convex combinations :

• The values of these variables are given by

b̄1 = {24, 8, 2, 5}b̄2 = {27.2, 11.2, 1.6, 3.4}

respectively, all other non listed variables have value 0.

• Considering only the variables that enter in the cost, the

two extreme optima are :

e1 =





x1 = 2
x2 = 0
x3 = 8



 , e2 =





x1 = 0
x2 = 1.6
x3 = 11.2




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Solutions

• All the intermediary solutions are given by :





x1 = 2c
x2 = 1.6− 1.6c
x3 = 11.2 − 3.2c





with 0 ≤ c ≤ 1.

• The cost function is therefore :

z = −60x1 − 30x2 − 20x3 = −280

and it is constant for all these solutions.

• For more complex solutions, we can have several variables

at zero in P . The set of solution is the convex vectorial

space induced by the extremal solutions. To find them we

need to realize all the variable substitutions possible.

Cycles can be as long as the rank of the matrix, minus one.
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Unbounded solutions

• Consider a baker that produces both ordinary and rye

breads ;

• Ordinary breads sells for 36 centimes and rye bread for 30

centimes ;

• One ordinary bread requires one unit of raising powder

and 60g of flour ; one rye bread requires one unit of raising

powder and 50g of flour.

• The bakery has stocks of 5 units of raising powder and

100g of flour.

• We can purchase more raising powder and flour. Raising

powder costs 3 centimes per unit, flour cost 4 centimes

each 10g.

• Maximize the bakery’s profit.
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Formulation

• x1 = number of ordinary breads produced

• x2 = number of rye breads produced

• x3 = number of units of raising powder

• x4 = consumed flour per 10g.

• Revenues = 36x1 + 30x2, costs = 3x3 + 4x4

• Objective = max z = 36x1 + 30x2 − 3x3 − 4x4

• Constraint 1 : x1 + x2 ≤ 5 + x3

• Constraint 2 : 6x1 + 5x2 ≤ 10 + x4
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Standard form

• We introduce two slack variables for the constraits, x5, x6,

that are both positive

• the standard form is the following :

min z = −36x1 − 30x2 + 3x3 + 4x4

x1 + x2 − x3 + x5 = 5

6x1 + 5x2 − x4 + x6 = 10
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First iteration

• IBV={x5, x6} ; NBV={x1, x2, x3, x4}

• b̄ =
[

5 10
]

• Reduced costs =
[

−36 −30 3 4
]

so x1 is entering.

• P =
[

1 6
]

• Ratios =
[

5 1.66667
]

so x6 is exiting.
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Second iteration

• IBV={x5, x1} ; NBV={x2, x3, x4, x6}

• b̄ =
[

3.333 1.667
]

• Reduced costs =
[

0 3 −2 6
]

so x4 is entering.

• P =
[

0.167 −0.167
]

• Ratios =
[

20 −10
]

so x5 is exiting.
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Third iteration

• IBV={x4, x1} ; NBV={x2, x3, x5, x6}

• b̄ =
[

20 5
]

• Reduced costs =
[

2 −9 12 4
]

so x3 is entering.

• P =
[

−3.333 −5
]

• Ratios =
[

−6 −1
]

The solution is unbounded.
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Solution for the bakery

• With the last IBV, the solution writes :

6x1 −x4 = 10
x1 −x3 = 5

• Replacing x1 and x4 in terms of x3 by these expressions in

the cost yields

z = −100− 9x3

By augmenting x3 arbitrarily, z is unbounded towards −∞,

while still obeying all the constraints.

• This means the bakery is profitable !
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